[1]
E. Gozlan, M. Bamberger, S.F. Dirnfeld, B. Prinz, J. Klodt, Topologically close-packed precipitations and phase diagrams of NiMoCr and NiMoFe and of NiMoFe with constant additions of chromium, Mater. Sci. Eng. A 141 (1991) 85-95.
DOI: 10.1016/0921-5093(91)90712-v
Google Scholar
[2]
X.D. Lu, J.H. Du, Q. Deng, High temperature structure stability of GH4169 superalloy, Mater. Sci. Eng. A 559 (2013) 623-628.
DOI: 10.1016/j.msea.2012.09.001
Google Scholar
[3]
T.M. Pollock, Alloy design for aircraft engines, Nat. Mater. 15 (2016) 809-815.
Google Scholar
[4]
D. Furrer, H. Fecht, Ni-based superalloys for turbine discs, JOM-US 51 (1999) 14-17.
DOI: 10.1007/s11837-999-0005-y
Google Scholar
[5]
T.M. Pollock, S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propul. Power. 22 (2006) 361-374.
DOI: 10.2514/1.18239
Google Scholar
[6]
H. Fecht, D. Furrer, Processing of Nickel-Base Superalloys for Turbine Engine Disc Applications, Adv. Eng. Mater. 2 (2010) 777-787.
DOI: 10.1002/1527-2648(200012)2:12<777::aid-adem777>3.0.co;2-r
Google Scholar
[7]
X.Z. Lv, F. Sun, J.Y. Tong, Q. Feng, J.X. Zhang, Paired Dislocations and Their Interactions with γ' Particles in Polycrystalline Superalloy GH4037, J. Mater. Eng. Perform. 24 (2015) 143-148.
DOI: 10.1007/s11665-014-1307-y
Google Scholar
[8]
F. Sun, J.Y. Tong, Q. Feng, J.X. Zhang, Microstructural evolution and deformation features in gas turbine blades operated in-service, J. Alloys Compd. 618 (2015) 728-733.
DOI: 10.1016/j.jallcom.2014.08.246
Google Scholar
[9]
N.K. Park, I.S. Kim, Y.S. Na, J.T. Yeom, Hot forging of a nickel-base superalloy, J. Mate. Process. Technol. 111 (2001) 98-102.
DOI: 10.1016/s0924-0136(01)00489-7
Google Scholar
[10]
L. Kunz, P. Lukáš, R. Konečná, S. Fintová, Casting defects and high temperature fatigue life of IN 713LC superalloy, Int J. Fatigue 41 (2012) 47-51.
DOI: 10.1016/j.ijfatigue.2011.12.002
Google Scholar
[11]
M.C. Flemings, Behavior of metal alloys in the semisolid state, Metall. Trans. A 22 (1991) 269-293.
Google Scholar
[12]
C.P. Wang, Y.Y. Zhang, D.F. Li, H.S. Mei, W. Zhang, J. Liu, Microstructure evolution and mechanical properties of ZK60 magnesium alloy produced by SSTT and RAP route in semi-solid state, Trans. Nonferrous Met. Soc. China 23 (2013) 3621-3628.
DOI: 10.1016/s1003-6326(13)62909-x
Google Scholar
[13]
S. Nafisi, O. Lashkari, R. Ghomashchi, F. Ajersch, A. Charette, Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al-Si slurries, Acta Mater. 54 (2006) 3503-3511.
DOI: 10.1016/j.actamat.2006.03.016
Google Scholar
[14]
Y.F. Wang, S.D. Zhao, X.Z. Zhao, Y.Q. Zhao, Microstructural coarsening of 6061 aluminum alloy semi-solid billets prepared via recrystallization and partial melting, J. Mech. Sci. Technol. 31 (2017) 3917-3923.
DOI: 10.1007/s12206-017-0737-5
Google Scholar
[15]
Q. Q. Zhang, Z.Y. Cao, Y.B. Liu, J.H. Wu, Y.F. Zhang, Study on the microstructure evolution and rheological parameter of semisolid Mg-10Al-4Zn alloys, Mater. Sci. Eng. A 478 (2008) 195-200.
DOI: 10.1016/j.msea.2007.05.095
Google Scholar
[16]
W. Liu, D.D. Yang, G.F. Quan, Y.B. Zhang, D.D. Yao, Microstructure Evolution of Semisolid Mg-2Zn-0.5Y Alloy during Isothermal Heat Treatment, Rare Met. Mater. Eng. 45 (2016) 1967-1972.
DOI: 10.1016/s1875-5372(16)30155-2
Google Scholar
[17]
B. Amin-Ahmadi, H. Aashuri, Semisolid structure for M2 high speed steel prepared by cooling slope, J. Mate. Process. Technol. 210 (2010) 1632-1635.
DOI: 10.1016/j.jmatprotec.2010.05.011
Google Scholar
[18]
T. Balan, E. Becker, L. Langlois, R. Bigot, A new route for semi-solid steel forging, CIRP Ann. Manuf. Technol. 66 (2017) 297-300.
DOI: 10.1016/j.cirp.2017.04.111
Google Scholar
[19]
S.J. Park, S.M. Seo, Y.S. Yoo, H.W. Jeong, H.J. Jang, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corros. Sci. 90 (2015) 305-312.
DOI: 10.1016/j.corsci.2014.10.025
Google Scholar
[20]
D. Saber, I.S. Emam, R. Abdel-Karim, High temperature cyclic oxidation of Ni based superalloys at different temperatures in air, J. Alloys Compd. 719 (2017) 133-141.
DOI: 10.1016/j.jallcom.2017.05.130
Google Scholar
[21]
L. Qin, Y.L. Pei, S.S. Li, X.B. Zhao, S.K. Gong, H.B. Xu, Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys, Corros. Sci. 719 (2017) 133-141.
DOI: 10.1016/j.corsci.2017.08.025
Google Scholar
[22]
E.D. Manson-Whitton, I.C. Stone, J.R. Jones, P.S. Grant, B. Cantor, Isothermal grain coarsening of spray formed alloys in the semi-solid state, Acta Mater. 50 (2002) 2517-2535.
DOI: 10.1016/s1359-6454(02)00080-0
Google Scholar
[23]
Y.L. Lu, M.Q. Li, W.C. Huang, H.T. Jiang, Deformation behavior and microstructural evolution during the semi-solid compression of Al-4Cu-Mg alloy. Mater. Charact. 54 (2005) 423-430.
DOI: 10.1016/j.matchar.2005.01.013
Google Scholar
[24]
B. Liu, X.G. Yuan, H.J. Huang, S.H. Zhang, Semi-Solid Deformation of Al-Fe Alloy Prepared by Electromagnetic Stirring. Adv. Mater. Res. 152 (2011) 726-733.
DOI: 10.4028/www.scientific.net/amr.152-153.726
Google Scholar
[25]
J.G. Wang, P. Lu, H.Y. Wang, Q.C. Jiang, Effect of predeformation on the semisolid microstructure of Mg-9Al-0.6Zn alloy, Mater. Lett. 58 (2004) 3852-3856.
DOI: 10.1016/j.matlet.2004.07.044
Google Scholar
[26]
Y.Q. Zhao, W.L. Wu, H. Chang, Research on microstructure and mechanical properties of a new α + Ti2Cu alloy after semi-solid deformation, Mater. Sci. Eng. A 416 (2006) 181-186.
DOI: 10.1016/j.msea.2005.10.038
Google Scholar
[27]
M. Yi, S. Sugiyama, J. Yanagimoto, Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel, J. Mate. Process. Technol. 212 (2012) 1731-1741.
DOI: 10.1016/j.jmatprotec.2012.04.003
Google Scholar
[28]
J.F. Jiang, G.F. Xiao, W. Ying, Y.S. Qi, Microstructure evolution of wrought nickel based superalloy GH4037 in the semi-solid state, Mater. Charact. 141 (2018) 229-237.
DOI: 10.1016/j.matchar.2018.04.057
Google Scholar
[29]
P.K. Seo, C.G. Kang, The effect of raw material fabrication process on microstructural characteristics in reheating process for semi-solid forming, J. Mate. Process. Technol. 162 (2005) 402-409.
DOI: 10.1016/j.jmatprotec.2005.02.012
Google Scholar
[30]
A. Sato, Y.L. Chiu, R.C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Mater. 59 (2011) 225-240.
DOI: 10.1016/j.actamat.2010.09.027
Google Scholar
[31]
R. Haugsrud, On the high-temperature oxidation of nickel, Corros. Sci. 45 (2003) 211-235.
Google Scholar
[32]
J.D. Cao, J.S. Zhang, R.F. Chen, Y.X. Ye, Y.Q. Hua, High temperature oxidation behavior of Ni-based superalloy GH202, Mater. Charact. 118 (2016) 122-128.
DOI: 10.1016/j.matchar.2016.05.013
Google Scholar
[33]
Q.Q. Shi, J. Liu, W. Wang, W. Yan, Y.Y. Shan, K. Yang, High Temperature Oxidation Behavior of SIMP Steel, Oxid. Met. 83 (2015) 521-532.
DOI: 10.1007/s11085-015-9532-9
Google Scholar
[34]
D.W. Yun, S.M. Seo, H.W. Jeong, I.S. Kim, Y.S. Yoo, Modelling high temperature oxidation behaviour of Ni-Cr-W-Mo alloys with Bayesian neural network, J. Alloys Compd. 587 (2014) 105-112.
DOI: 10.1016/j.jallcom.2013.10.138
Google Scholar
[35]
H. Zhang, Y. Liu, X. Chen, H.W. Zhang, Y.X. Li, Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content, J. Alloys Compd. 727 (2017) 410-418.
DOI: 10.1016/j.jallcom.2017.08.137
Google Scholar
[36]
S.C. Hardy, P.W. Voorhees, Ostwald ripening in a system with a high volume fraction of coarsening phase, Metall. Trans. A 19 (1988) 2713-2721.
DOI: 10.1007/bf02645806
Google Scholar
[37]
J. Wang, H. Xiao, L.B. Wu, H.L. Hu, D.H. Lu, R.F. Zhou, R. Zhou, Deformation characteristic of semi-solid ZCuSnl0 copper alloy during isothermal compression, Rare Met. 35 (2016) 620-626.
DOI: 10.1007/s12598-015-0479-4
Google Scholar
[38]
C.P. Chen, C.Y.A. Tsao, Semi-solid deformation of non-dendritic structures-I. Phenomenological behavior, Acta Mater. 45 (1997) 1955-1968.
DOI: 10.1016/s1359-6454(96)00312-6
Google Scholar