[1]
J. G. Kaufman, Properties of aluminium alloys – Tensile, creep and fatigue data at high and low temperatures. ASM international, Metals Park, (1999).
Google Scholar
[2]
J. A. Lee, P.-S. Chen, High strength aluminum alloy for high temperature applications US Patent 6,918,970, (2005).
Google Scholar
[3]
S. A. Awe, S. Seifeddine, A. E. W. Jarfors, Y. C. Lee, A. K. Dahle, Development of new Al-Cu-Si alloys for high temperature performance, Advanced Materials Letters, 8 (2017) 695-701.
DOI: 10.5185/amlett.2017.1471
Google Scholar
[4]
D. Casari, F. Poli, M. Merlin, M. T. Di Giovanni, Li, Y.; Di Sabatino, M., Effect of Ni additions on A356 alloy's microstructure and high-temperature mechanical properties, La Metallurgia Italiana 108 (2016) 37-40.
DOI: 10.3390/met8040224
Google Scholar
[5]
T. Bogdanoff. Dahle, A. K.; Seifeddine, S., Effect of Co and Ni additon on the microstructure and mechanical properties at room and elevated temperature of an Al-7%Si alloy, Int. J. Met. 12 (2018) 434-440.
DOI: 10.1007/s40962-017-0178-z
Google Scholar
[6]
C. Y. Jeong, Effect of Alloying Elements on High Temperature Mechanical Properties for Piston Alloy, Materials Transactions, 53 (2012) 234-239.
DOI: 10.2320/matertrans.m2011259
Google Scholar
[7]
N. Takata, M. Ishihara, A. Suzuki, M. Kobashi, Microstructure and strength of a novel heat-resistant aluminum alloy strengthened by T-Al6Mg11Zn11 phase at elevated temperatures, Materials Science and Engineering, A 739 (2019) 62-70.
DOI: 10.1016/j.msea.2018.10.034
Google Scholar
[8]
E. Balducci, L. Ceschini, S. Messieri, S. Wenner, R. Holmestad, Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging, Mater. Des. 119 (2017), 119, 54-64.
DOI: 10.1016/j.matdes.2017.01.058
Google Scholar
[9]
M. Vorel, S. Hinsch, M. Konopka, M. Scheerer, AlMgSc alloy 5028 status of maturation. In 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS), Milan, Italy, (2017).
Google Scholar
[10]
S. M. Dar, H. Liao, A. Xu, A., Effect of Cu and Mn content on solidification microstructure, T-phase formation and mechanical property of AlCuMn alloys. J. Alloy. Compd. 774 (2019) 758-767.
DOI: 10.1016/j.jallcom.2018.09.362
Google Scholar
[11]
N. A. Belov, A. N. Alabin, I. A. Matveeva, Optimisation of phase composition of Al-Cu-Mn-Zr-Sc alloys for rolled products without requirement for solution treatment and quenching, J. Alloy. Compd. 583 (2014) 206-213.
DOI: 10.1016/j.jallcom.2013.08.202
Google Scholar
[12]
F. Zupanič, D. Wang, C. Gspan, T. Bončina, Precipitates in a quasicrystal-strengthened Al–Mn–Be–Cu alloy, Mater. Charact. 106 (2015) 93-99.
DOI: 10.1016/j.matchar.2015.05.013
Google Scholar
[13]
S. Huo, B. Mais, Characteristics of heat resistant nanoquasicrystalline PM aluminum materials. Metal Powder Report, 72 (2017) 45-50.
DOI: 10.1016/j.mprp.2016.07.003
Google Scholar
[14]
Q. Yan, D. Fu, X. Deng, H. Zhang, Z. Chen, Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures, Mater. Charact. 58 (2007) 575-579.
DOI: 10.1016/j.matchar.2006.06.024
Google Scholar
[15]
T. Bončina, M. Albu, F. Zupanič, Ageing of Al-Mn-Cu-Be Alloys for Stimulating Precipitation of Icosahedral Quasicrystals, Metals 10 (2020), 937.
DOI: 10.3390/met10070937
Google Scholar
[16]
F. Zupanič, C. Gspan, J. Burja, T. Bončina, Quasicrystalline and L12 precipitates in a microalloyed Al-Mn-Cu alloy, Materials Today Communications 22 (2020) 100809.
DOI: 10.1016/j.mtcomm.2019.100809
Google Scholar