[1]
D. B. Spencer, Rheology of liquid-solid mixtures of lead-tin, PhD thesis, MIT, Cambridge, MA, (1971).
Google Scholar
[2]
D. B. Spencer, R. Mehrabian, and M. C. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall. Trans., 1972, 3, 1925–(1932).
DOI: 10.1007/bf02642580
Google Scholar
[3]
M. C. Flemings: Behavior of metal alloys in the semisolid state. Metall. Trans. A 22(1991) 957–981.
DOI: 10.1007/bf02661090
Google Scholar
[4]
D. H. Kirkwood, Semisolid metal processing. Int. Mater. Rev. 39 (1994) 173–189.
Google Scholar
[5]
Z. Fan, Semisolid metal processing. International Materials Reviews. 47 (2002) 49-85.
Google Scholar
[6]
H.V. Atkinson, Semisolid processing of metallic materials. Materials Science and Technology. 26 (2010) 1401-1413.
DOI: 10.1179/026708310x12815992418012
Google Scholar
[7]
D.G. McCartney, Grain refining of aluminum and its alloys using inoculant, International Materials Reviews, 34(1989) 247-260.
DOI: 10.1179/imr.1989.34.1.247
Google Scholar
[8]
M. Easton, D. StJohn, Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature, Metall. Mater. Trans. A., 30 (1999) 1613-1623.
DOI: 10.1007/s11661-999-0098-5
Google Scholar
[9]
M. Easton, D. StJohn, Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm, Metall. Mater. Trans. A., 30 (1999) 1625-1633.
DOI: 10.1007/s11661-999-0099-4
Google Scholar
[10]
M. Easton, D. StJohn, An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles, Metall. Mater. Trans. A., 36 (2005) 1911-1920.
DOI: 10.1007/s11661-005-0054-y
Google Scholar
[11]
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, The Interdependence Theory: The relationship between grain formation and nucleant selection, Acta Mater. 59 (2011) 4907-4921.
DOI: 10.1016/j.actamat.2011.04.035
Google Scholar
[12]
T.E. Quested, A.T. Dinsdale, A.L. Greer, Thermodynamic modelling of growth-restriction effects in aluminium alloys, Acta Mater., 53 (2005) 1323-1334.
DOI: 10.1016/j.actamat.2004.11.024
Google Scholar
[13]
T.E. Quested, A.L. Greer, The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys, Acta Mater., 52 (2004) 3859-3868.
DOI: 10.1016/j.actamat.2004.04.035
Google Scholar
[14]
T.E. Quested, A.L. Greer, Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification, Acta Mater., 53 (2005) 4643-4653.
DOI: 10.1016/j.actamat.2005.06.018
Google Scholar
[15]
A. Greer, A. Bunn, A. Tronche, P. Evans, D. Bristow, Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B, Acta Materialia 48 (2000) 2823–2835.
DOI: 10.1016/s1359-6454(00)00094-x
Google Scholar
[16]
T.E. Quested, A.L. Greer, Athermal heterogeneous nucleation of solidification, Acta Mater., 53 (2005) 2683-2692.
DOI: 10.1016/j.actamat.2005.02.028
Google Scholar
[17]
N. Iqbal, N.H. van Dijk, T. Hansen, L. Katgerman, G.J. Kearley, The role of solute titanium and TiB2 particles in the liquid–solid phase transformation of aluminum alloys, Mater. Sci. Eng. A, 386 (2004) 20-26.
DOI: 10.1016/s0921-5093(04)00921-9
Google Scholar
[18]
N. Iqbal, N.H. van Dijk, S.E. Offerman, N. Geerlofs, M.P. Moret, L. Katgerman, G.J. Kearley, In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys, Mater. Sci. Eng. A, 416 (2006) 18-32.
DOI: 10.1016/j.msea.2005.10.045
Google Scholar
[19]
N. Iqbal, N.H. van Dijk, S.E. Offerman, M.P. Moret, L. Katgerman, G.J. Kearley, Real-time observation of grain nucleation and growth during solidification of aluminium alloys, Acta Mater., 2005, 53, 2875-2880. https://doi.org/10.1016/j.actamat.2005.02.045.
DOI: 10.1016/j.actamat.2005.02.045
Google Scholar
[20]
J.A. Spittle, Grain refinement in shape casting of aluminium alloys, International Journal of Cast Metals Research 19 (2006) 210–222.
DOI: 10.1179/136404606225023444
Google Scholar
[21]
P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, A.H. Green, New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice, Materials Science and Technology 14 (1998) 394–404.
DOI: 10.1179/mst.1998.14.5.394
Google Scholar
[22]
P. Schumacher, A.L. Greer, Heterogeneously nucleated α-Al in amorphous aluminium alloys, Mater. Sci. Eng. A, 178(1994) 309-313.
DOI: 10.1016/0921-5093(94)90559-2
Google Scholar
[23]
J. Li, F.S. Hage, Q.M. Ramasse, P. Schumacher, The nucleation sequence of α-Al on TiB₂ particles in Al-Cu alloys, Acta Materialia 206 (2021) 1-9.
DOI: 10.1016/j.actamat.2021.116652
Google Scholar
[24]
Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook et al., Grain refining mechanism in the Al/Al–Ti–B system, Acta Materialia, 84 (2015) 292–304.
DOI: 10.1016/j.actamat.2014.10.055
Google Scholar
[25]
S.A. Kori, V. Auradi, B.S. Murty, M. Chakraborty, Poisoning and fading mechanism of grain refinement in Al-7Si alloy, Proceedings of 3rd International Conference On Advanced Materials Processing (ICAMP-3) (2004) 387–393.
Google Scholar
[26]
S. Kori, B. Murty, M. Chakraborty, Development of an efficient grain refiner for Al–7Si alloy, Materials Science and Engineering: A 280 (2000) 58–61.
DOI: 10.1016/s0921-5093(99)00656-5
Google Scholar
[27]
R. Ghomashchi, The evolution of Al-TiSi intermetallic phases in Ti-added A356 Al-Si alloy, Journal of Alloys and Compounds, 537 (2012) 255-260.
DOI: 10.1016/j.jallcom.2012.04.087
Google Scholar
[28]
D. Qiu, J.A. Taylor, M-X. Zhang, P.M. Kelly, A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys, Acta Mater. 55 (2007) 1447-1456.
DOI: 10.1016/j.actamat.2006.09.046
Google Scholar
[29]
J. Gröbner, D. Mirković, R. Schmid-Fetzer, Thermodynamic aspects of grain refinement of Al–Si alloys using Ti and B, Materials Science and Engineering: A 395 (2005) 10–21.
DOI: 10.1016/j.msea.2004.11.048
Google Scholar
[30]
T. Wang, Z. Chen, H. Fu, J. Xu, Y. Fu, T. Li, Grain refining potency of Al–B master alloy on pure aluminum, Scripta Materialia 64 (2011) 1121–1124.
DOI: 10.1016/j.scriptamat.2011.03.001
Google Scholar
[31]
Z.N. Chen, H.J. Kang, G.H. Fan, Jiehua Li, Y.P. Lu, J.C. Jie, Y.B. Zhang, T.J. Li, X.G. Jian, T.M. Wang, Grain refinement of hypoeutectic Al‒Si alloys with B, Acta Mater. 120 (2016) 168-178.
DOI: 10.1016/j.actamat.2016.08.045
Google Scholar
[32]
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system, J. Mater. Sci. Technol., 65 (2021) 190-201.
DOI: 10.1016/j.jmst.2020.04.075
Google Scholar
[33]
Y. Li, B. Liu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system, Acta Mater., 187 (2021) 51-65.
DOI: 10.1016/j.actamat.2020.01.039
Google Scholar
[34]
J.H. Li, Y.G. Yang, S. Sömmez, J.A. Taylor, B. Oberdorfer, D. Habe, S. Heugenhauser, P. Schumacher, Simultaneously refining eutectic grain and modifying eutectic Si in Al10Si0.3Mg alloys by Sr and CrB2 additions, International Journal of Cast Metals Research, 29 (2016) 158-173.
DOI: 10.1080/13640461.2015.1121340
Google Scholar
[35]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review. B, Condensed matter 54 (1996) 11169–11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[36]
D. Wearing, A.P. Horsfield, W. Xu, P.D. Lee, Which wets TiB2 inoculant particles: Al or Al3Ti?, Journal of Alloys and Compounds, 664 (2016) 460–468.
DOI: 10.1016/j.jallcom.2015.12.203
Google Scholar
[37]
P. Norby, A.N. Christensen, Preparation and Structure of Al3Ti, Acta Chem. Scand. 40a (1986) 157–159.
DOI: 10.3891/acta.chem.scand.40a-0157
Google Scholar
[38]
Y.F. Han, Y.B. Dai, J. Wang, D. Shu, B.D. Sun, First-principles calculations on Al/AlB2 interfaces, Applied Surface Science 257 (2011) 7831–7836.
DOI: 10.1016/j.apsusc.2011.04.038
Google Scholar
[39]
J. Li, M. Zhang, Y. Zhou, G. Chen, First-principles study of Al/A13Ti heterogeneous nucleation interface, Applied Surface Science 307 (2014) 593–600.
DOI: 10.1016/j.apsusc.2014.04.079
Google Scholar
[40]
E.A. Brandes, G.B. Brook, Smithells metals reference book, 7th ed., Butterworth-Heinemann; (1992).
Google Scholar
[41]
K. Das, S. Das, K. Das, S. Das, A Review of the Ti-Al-Ta (Titanium-Aluminum-Tantalum) System, J. Phase Equilib. Diffus. 26 (2005) 322–329.
DOI: 10.1361/154770205x56305
Google Scholar