Effect of Solute Ta on Grain Refinement of Al-7Si-0.3Mg Based Alloys

Article Preview

Abstract:

Different Ta concentrations together with stochiometric grain refiner (Al-2.2Ti-1B) in Al-Si-Mg based alloys were investigated with the aim to elucidate grain refinement mechanisms. Post-solidification microstructure was characterised using optical microscopy and scanning electron microscopy (SEM), with a special focus on the Ta-rich layer (more likely to be Al3Ta) on the basal planes (0001) of TiB2. A significant grain refinement was observed by using the solute Ta together with stochiometric grain refiner (Al-2.2Ti-1B). In order to further elucidate the formation of Ta-rich layer on the basal planes (0001) of TiB2, the Density Functional Theory (DFT) calculation were also performed to determine the interface energies of different interfaces and sandwich configurations, including Al (111), Al3Ti (112) and Al3Ta (112) at the interface of TiB2 basal plane (0001). It was found that the interface energy for Ti-terminated TiB2 at the interface throughout all configurations involved in this paper is lower than that for B-terminated TiB2, indicating that Ti-terminated TiB2 is more favourable. It was also found that the Al3Ta configuration yields the same interface energies as the Al3Ti configuration. Furthermore, the interface energy of the sandwich configuration also shows nearly identical values along the TiB2 // Al3Ti and TiB2 // Al3Ta interface energy, strongly indicating that the solute Ti can be fully replaced by the solute Ta.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 327)

Pages:

54-64

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. B. Spencer, Rheology of liquid-solid mixtures of lead-tin, PhD thesis, MIT, Cambridge, MA, (1971).

Google Scholar

[2] D. B. Spencer, R. Mehrabian, and M. C. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall. Trans., 1972, 3, 1925–(1932).

DOI: 10.1007/bf02642580

Google Scholar

[3] M. C. Flemings: Behavior of metal alloys in the semisolid state. Metall. Trans. A 22(1991) 957–981.

DOI: 10.1007/bf02661090

Google Scholar

[4] D. H. Kirkwood, Semisolid metal processing. Int. Mater. Rev. 39 (1994) 173–189.

Google Scholar

[5] Z. Fan, Semisolid metal processing. International Materials Reviews. 47 (2002) 49-85.

Google Scholar

[6] H.V. Atkinson, Semisolid processing of metallic materials. Materials Science and Technology. 26 (2010) 1401-1413.

DOI: 10.1179/026708310x12815992418012

Google Scholar

[7] D.G. McCartney, Grain refining of aluminum and its alloys using inoculant, International Materials Reviews, 34(1989) 247-260.

DOI: 10.1179/imr.1989.34.1.247

Google Scholar

[8] M. Easton, D. StJohn, Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature, Metall. Mater. Trans. A., 30 (1999) 1613-1623.

DOI: 10.1007/s11661-999-0098-5

Google Scholar

[9] M. Easton, D. StJohn, Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm, Metall. Mater. Trans. A., 30 (1999) 1625-1633.

DOI: 10.1007/s11661-999-0099-4

Google Scholar

[10] M. Easton, D. StJohn, An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles, Metall. Mater. Trans. A., 36 (2005) 1911-1920.

DOI: 10.1007/s11661-005-0054-y

Google Scholar

[11] D.H. StJohn, M. Qian, M.A. Easton, P. Cao, The Interdependence Theory: The relationship between grain formation and nucleant selection, Acta Mater. 59 (2011) 4907-4921.

DOI: 10.1016/j.actamat.2011.04.035

Google Scholar

[12] T.E. Quested, A.T. Dinsdale, A.L. Greer, Thermodynamic modelling of growth-restriction effects in aluminium alloys, Acta Mater., 53 (2005) 1323-1334.

DOI: 10.1016/j.actamat.2004.11.024

Google Scholar

[13] T.E. Quested, A.L. Greer, The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys, Acta Mater., 52 (2004) 3859-3868.

DOI: 10.1016/j.actamat.2004.04.035

Google Scholar

[14] T.E. Quested, A.L. Greer, Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification, Acta Mater., 53 (2005) 4643-4653.

DOI: 10.1016/j.actamat.2005.06.018

Google Scholar

[15] A. Greer, A. Bunn, A. Tronche, P. Evans, D. Bristow, Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B, Acta Materialia 48 (2000) 2823–2835.

DOI: 10.1016/s1359-6454(00)00094-x

Google Scholar

[16] T.E. Quested, A.L. Greer, Athermal heterogeneous nucleation of solidification, Acta Mater., 53 (2005) 2683-2692.

DOI: 10.1016/j.actamat.2005.02.028

Google Scholar

[17] N. Iqbal, N.H. van Dijk, T. Hansen, L. Katgerman, G.J. Kearley, The role of solute titanium and TiB2 particles in the liquid–solid phase transformation of aluminum alloys, Mater. Sci. Eng. A, 386 (2004) 20-26.

DOI: 10.1016/s0921-5093(04)00921-9

Google Scholar

[18] N. Iqbal, N.H. van Dijk, S.E. Offerman, N. Geerlofs, M.P. Moret, L. Katgerman, G.J. Kearley, In situ investigation of the crystallization kinetics and the mechanism of grain refinement in aluminum alloys, Mater. Sci. Eng. A, 416 (2006) 18-32.

DOI: 10.1016/j.msea.2005.10.045

Google Scholar

[19] N. Iqbal, N.H. van Dijk, S.E. Offerman, M.P. Moret, L. Katgerman, G.J. Kearley, Real-time observation of grain nucleation and growth during solidification of aluminium alloys, Acta Mater., 2005, 53, 2875-2880. https://doi.org/10.1016/j.actamat.2005.02.045.

DOI: 10.1016/j.actamat.2005.02.045

Google Scholar

[20] J.A. Spittle, Grain refinement in shape casting of aluminium alloys, International Journal of Cast Metals Research 19 (2006) 210–222.

DOI: 10.1179/136404606225023444

Google Scholar

[21] P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, A.H. Green, New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice, Materials Science and Technology 14 (1998) 394–404.

DOI: 10.1179/mst.1998.14.5.394

Google Scholar

[22] P. Schumacher, A.L. Greer, Heterogeneously nucleated α-Al in amorphous aluminium alloys, Mater. Sci. Eng. A, 178(1994) 309-313.

DOI: 10.1016/0921-5093(94)90559-2

Google Scholar

[23] J. Li, F.S. Hage, Q.M. Ramasse, P. Schumacher, The nucleation sequence of α-Al on TiB₂ particles in Al-Cu alloys, Acta Materialia 206 (2021) 1-9.

DOI: 10.1016/j.actamat.2021.116652

Google Scholar

[24] Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook et al., Grain refining mechanism in the Al/Al–Ti–B system, Acta Materialia, 84 (2015) 292–304.

DOI: 10.1016/j.actamat.2014.10.055

Google Scholar

[25] S.A. Kori, V. Auradi, B.S. Murty, M. Chakraborty, Poisoning and fading mechanism of grain refinement in Al-7Si alloy, Proceedings of 3rd International Conference On Advanced Materials Processing (ICAMP-3) (2004) 387–393.

Google Scholar

[26] S. Kori, B. Murty, M. Chakraborty, Development of an efficient grain refiner for Al–7Si alloy, Materials Science and Engineering: A 280 (2000) 58–61.

DOI: 10.1016/s0921-5093(99)00656-5

Google Scholar

[27] R. Ghomashchi, The evolution of Al-TiSi intermetallic phases in Ti-added A356 Al-Si alloy, Journal of Alloys and Compounds, 537 (2012) 255-260.

DOI: 10.1016/j.jallcom.2012.04.087

Google Scholar

[28] D. Qiu, J.A. Taylor, M-X. Zhang, P.M. Kelly, A mechanism for the poisoning effect of silicon on the grain refinement of Al–Si alloys, Acta Mater. 55 (2007) 1447-1456.

DOI: 10.1016/j.actamat.2006.09.046

Google Scholar

[29] J. Gröbner, D. Mirković, R. Schmid-Fetzer, Thermodynamic aspects of grain refinement of Al–Si alloys using Ti and B, Materials Science and Engineering: A 395 (2005) 10–21.

DOI: 10.1016/j.msea.2004.11.048

Google Scholar

[30] T. Wang, Z. Chen, H. Fu, J. Xu, Y. Fu, T. Li, Grain refining potency of Al–B master alloy on pure aluminum, Scripta Materialia 64 (2011) 1121–1124.

DOI: 10.1016/j.scriptamat.2011.03.001

Google Scholar

[31] Z.N. Chen, H.J. Kang, G.H. Fan, Jiehua Li, Y.P. Lu, J.C. Jie, Y.B. Zhang, T.J. Li, X.G. Jian, T.M. Wang, Grain refinement of hypoeutectic Al‒Si alloys with B, Acta Mater. 120 (2016) 168-178.

DOI: 10.1016/j.actamat.2016.08.045

Google Scholar

[32] Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system, J. Mater. Sci. Technol., 65 (2021) 190-201.

DOI: 10.1016/j.jmst.2020.04.075

Google Scholar

[33] Y. Li, B. Liu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system, Acta Mater., 187 (2021) 51-65.

DOI: 10.1016/j.actamat.2020.01.039

Google Scholar

[34] J.H. Li, Y.G. Yang, S. Sömmez, J.A. Taylor, B. Oberdorfer, D. Habe, S. Heugenhauser, P. Schumacher, Simultaneously refining eutectic grain and modifying eutectic Si in Al10Si0.3Mg alloys by Sr and CrB2 additions, International Journal of Cast Metals Research, 29 (2016) 158-173.

DOI: 10.1080/13640461.2015.1121340

Google Scholar

[35] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review. B, Condensed matter 54 (1996) 11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[36] D. Wearing, A.P. Horsfield, W. Xu, P.D. Lee, Which wets TiB2 inoculant particles: Al or Al3Ti?, Journal of Alloys and Compounds, 664 (2016) 460–468.

DOI: 10.1016/j.jallcom.2015.12.203

Google Scholar

[37] P. Norby, A.N. Christensen, Preparation and Structure of Al3Ti, Acta Chem. Scand. 40a (1986) 157–159.

DOI: 10.3891/acta.chem.scand.40a-0157

Google Scholar

[38] Y.F. Han, Y.B. Dai, J. Wang, D. Shu, B.D. Sun, First-principles calculations on Al/AlB2 interfaces, Applied Surface Science 257 (2011) 7831–7836.

DOI: 10.1016/j.apsusc.2011.04.038

Google Scholar

[39] J. Li, M. Zhang, Y. Zhou, G. Chen, First-principles study of Al/A13Ti heterogeneous nucleation interface, Applied Surface Science 307 (2014) 593–600.

DOI: 10.1016/j.apsusc.2014.04.079

Google Scholar

[40] E.A. Brandes, G.B. Brook, Smithells metals reference book, 7th ed., Butterworth-Heinemann; (1992).

Google Scholar

[41] K. Das, S. Das, K. Das, S. Das, A Review of the Ti-Al-Ta (Titanium-Aluminum-Tantalum) System, J. Phase Equilib. Diffus. 26 (2005) 322–329.

DOI: 10.1361/154770205x56305

Google Scholar