A И-Shaped Curve of Hot Tearing Susceptibility in Magsimal®-59-Based Alloys

Article Preview

Abstract:

The hot tearing susceptibility of Al-6Mg-xSi (x = 0-6.0 wt.%) alloys was studied using constrained rod casting. Addition of Si content resulted in double ternary eutectic reactions and then changed the freezing range and eutectic liquid fraction greatly, which made the hot tearing susceptibility show a И-curve with the increasing of Si content. The И-curve was obviously different from the λ-curve that supported by most researchers.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 327)

Pages:

98-104

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Trudonoshyn, O. Prach, Multistep nucleation and multi-modification effect of Sc in hypoeutectic Al-Mg-Si alloys, Heliyon 5 (2019) 1-12.

DOI: 10.1016/j.heliyon.2019.e01202

Google Scholar

[2] G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D. J. Lloyd, Microstructural control of aluminum sheet used in automotive applications, Mater. Charact. 35 (1995) 23-39.

DOI: 10.1016/1044-5803(95)00065-8

Google Scholar

[3] S. Ji, F. Yan, and Z. Fan, Development of a high strength Al-Mg2Si-Mg-Zn based alloy for high pressure die casting, Mater. Sci. Eng. A 626 (2014) 165-174.

DOI: 10.1016/j.msea.2014.12.019

Google Scholar

[4] L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworth, London, (1976).

Google Scholar

[5] R.A. Rosenberg, M.C. Flemings, H.F. Taylor, Nonferrous binary alloys hot tearing, Trans. AFS 68 (1960) 518-528.

Google Scholar

[6] D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminum alloys, Prog. Mater. Sci. 49 (2004) 629-711.

DOI: 10.1016/s0079-6425(03)00037-9

Google Scholar

[7] W. I. Pumphrey, D. C. Moore, Cracking during and after solidification in some aluminium copper magnesium alloys of high purity, J. Inst. Met. 75 (1948) 425-438.

Google Scholar

[8] F. Wang, H.K Dong, Z. Wang, P.L. Mao, Z. Liu, Hot tearing behavior of Mg-5Al-xCa alloys, Acta Metall. Sin. 53 (2017) 211-219.

Google Scholar

[9] P.H. Jennings, A.R.E. Singer, W.I. Pumphrey, Hot-shortness of some high-purity alloys in the systems aluminium-copper-silicon and aluminium-magnesium-silicon, J. Inst. Met. 74 (1947) 227-248.

Google Scholar

[10] D. Argo, M. Pekguleryuz, P. Vermette, and M. Lefebvre, Die Casting 2001, Cincinnati, OH, North American Die Casting Association, Chicago, IL, 2001, pp.181-186.

Google Scholar

[11] G. Vinodh, H.R. Jafari Nodooshan, D.J. Li, X.Q. Zeng, B. Hu, J.T. Carter, and A.K. Sachdev, Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys, Metall. Mater. Trans. A 51A (2020) 1897-1910.

DOI: 10.1007/s11661-020-05657-9

Google Scholar

[12] B. Hu, D.J. Li, J.Y. Wang, Z.X. Li, X.Y. Wang, X.Q. Zeng, Hot tearing behavior in double ternary eutectic alloy system: Mg-Ce-Al Alloys, Metall. Mater. Trans. A 51 (2020) 6658-6669.

DOI: 10.1007/s11661-020-06046-y

Google Scholar

[13] B. Hu, D.J. Li, Z.X. Li, J.K. Xu, X.Y. Wang, X.Q. Zeng, Hot tearing behavior in double ternary eutectic alloy system: Al-Mg-Si Alloys, Metall. Mater. Trans. A 52 (2021) 789-805.

DOI: 10.1007/s11661-020-06101-8

Google Scholar

[14] Pandat-Phase Diagram Calculation software package for Multicomponent Systems, Computherm LLC, Madison, WI 53719, (2001).

Google Scholar

[15] T.W. Clyne, G.J. Davies, Solidification and Casting of Metals, The Metals Society, London, 1979, pp.275-278.

Google Scholar

[16] J.F. Song, F.S. Pan, B. Jiang, A. Atrens, M.X. Zhang, Y. Lu, A review on hot tearing of magnesium alloys, J. Magn. Alloy. 4 (2016) 151-172.

DOI: 10.1016/j.jma.2016.08.003

Google Scholar

[17] R.A. Dodd, W.A. Pollard, J.W. Meier, Hot tearing of magnesium casting alloys, Trans. AFS 65 (1957) 100-117.

Google Scholar

[18] M.O. Pekguleryuz, P. Vermette, A study on hot-tear resistance of magnesium diecasting alloys, Trans. AFS 114 (2006) 729-734.

Google Scholar

[19] W.I. Pumphrey, P.H. Jennings, A consideration of the nature of brittleness at temperature above the solidus in castings and welds in aluminum alloys, J. Inst. Met. 75 (1948) 235-256.

Google Scholar

[20] J. Liu, S. Kou, Effect of diffusion on susceptibility to cracking during solidification, Acta Mater. 100 (2015) 359-368.

DOI: 10.1016/j.actamat.2015.08.064

Google Scholar

[21] J. Vero, The hot shortness of aluminum alloys, Met. Ind. 48 (1936) 431-442.

Google Scholar

[22] Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, K.U. Kainer, N. Hort, Influences of Y additions on the hot tearing susceptibility of Mg-1.5 wt.% Zn alloys, Mater. Sci. Forum 765 (2013) 306-310.

DOI: 10.4028/www.scientific.net/msf.765.306

Google Scholar

[23] G. Cao, S. Kou, Hot tearing of ternary Mg-Al-Ca alloy castings, Metall. Mater. Trans. A 37 (2006) 3647-3663.

DOI: 10.1007/s11661-006-1059-x

Google Scholar

[24] M. Bassan, B. Buonomo, G. Cavallari, E. Coccia, S. D'Antonio, V. Fafone, L. G. Foggetta, C. Ligi, A. Marini, G. Mazzitelli, G. Modestino, G. Pizzella, L. Quintieri, F. Ronga, P. Valente, Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures, Int. J. of Mod. Phys. B 27 (2013) 1-12.

DOI: 10.1142/s0217979213501191

Google Scholar