Bending Strength and Fracture Behaviour of Metal-Ceramic Interpenetrating Phase Composites Manufactured by Using Semi-Solid Forming Technology

Article Preview

Abstract:

Interpenetrating Phase Composites (IPC) belong to a special category of composite materials, offering great potential in terms of material properties due to the continuous volume structure of both composite components. While manufacturing of metal-ceramic IPC via existing casting and infiltration processes leads to structural deficits, semi-solid forming represents a promising technology for producing IPC components without such defects. Thereby, a solid open pore body made of ceramic is infiltrated with a metallic material in the semi-solid state. Good structural characteristics of the microstructure as the integrity of the open-pore bodies after infiltration and an almost none residual porosity within the composites have already been proven for this manufacturing route within a certain process window. On this basis, the following paper focuses on the mechanical properties such as bending strength of metal-ceramic IPC produced by using semi-solid forming technology. Thereby, the impact of the significant process parameters on these properties is analysed within a suitable process window. Furthermore, a fractographic analysis is carried out by observing and interpreting the fracture behaviour during these tests and the fracture surface thereafter.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 327)

Pages:

111-116

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Nestler, Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und Forschungsansätze,, Technische Universität Chemnitz, (2012).

Google Scholar

[2] F. Scherm et al., Microstructural characterization of interpenetrating light weight metal matrix composites,, Materials Science and Engineering A, vol. 518, p.118–123, (2009).

DOI: 10.1016/j.msea.2009.04.010

Google Scholar

[3] R.J. Moon, M. Tilbrook, M. Hoffman and A. Neubrand, Al-Al 2O 3 composites with interpenetrating network structures: Composite modulus estimation,, Journal of the American Ceramic Society, vol. 88, no. 3, p.666–674, (2005).

DOI: 10.1111/j.1551-2916.2005.00115.x

Google Scholar

[4] C. San Marchi, M. Kouzeli, R. Rao, J.A. Lewis and D.C. Dunand, Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture,, Scripta Materialia, vol. 49, no. 9, p.861–866, (2003).

DOI: 10.1016/s1359-6462(03)00441-x

Google Scholar

[5] D. Cree and M. Pugh, Production and characterization of a three-dimensional cellular metal-filled ceramic composite,, Journal of Materials Processing Technology, vol. 210, p.1905–1917, (2010).

DOI: 10.1016/j.jmatprotec.2010.07.002

Google Scholar

[6] J. Binner, H. Chang and R. Higginson, Processing of ceramic-metal interpenetrating composites,, Journal of the European Ceramic Society, (2009).

DOI: 10.1016/j.jeurceramsoc.2008.07.034

Google Scholar

[7] G. Standke, T. Müller, A. Neubrand, J. Weise and R. Westerheide, Metall-Matrix-Verbundwerkstoffe auf Basis von Hochleistungs- Schaumkeramiken,, (2005).

Google Scholar

[8] C. Seyboldt, M. Liewald and D. Heydt, Production of Aluminium Based Interpenetrating Phase Composites Using Semi-Solid Forming,, Key Engineering Materials, vol. 716, p.502–509, (2016).

DOI: 10.4028/www.scientific.net/kem.716.502

Google Scholar

[9] L. Schomer and M. Liewald, Structural Characteristics of Metal-Ceramic Interpenetrating Phase Composites Manufactured by Using Semi-Solid Forming Technology,, Solid State Phenomena, vol. 285, p.51–56, (2019).

DOI: 10.4028/www.scientific.net/ssp.285.51

Google Scholar

[10] L. Schomer and M. Liewald, Design of Semi-Solid Forming Tools for Producing Metal-Ceramic Interpenetrating Phase Composites,, Procedia Manufacturing, vol. 47, p.1004–1009, (2020).

DOI: 10.1016/j.promfg.2020.04.308

Google Scholar

[11] L. Schomer, M. Kütemeyer and M. Liewald, Interface Reactions Occurring in Metal-Ceramic Interpenetrating Phase Composites Manufactured by Using Semi-Solid Forming Technology,, Advanced Composites and Hybrid Materials, vol. 3, no. 2, p.222–230, May (2020).

DOI: 10.1007/s42114-020-00152-6

Google Scholar

[12] Deutsches Institut für Normung e.V., DIN EN 658-3:2002: Raumtemperatur, Mechanische Eigenschaften von keramischen Verbundwerkstoffen bei Biegefestigkeit; Teil 3: Bestimmung der,, Berlin: Beuth Verlag, (2002).

DOI: 10.31030/9126917

Google Scholar

[13] Deutsches Institut für Normung e.V., DIN EN ISO 3327:2009: Hartmetalle – Bestimmung der Biegebruchfestigkeit,, Berlin: Beuth Verlag, (2009).

DOI: 10.31030/1500054

Google Scholar

[14] D. Hardy and D.J. Green, Mechanical Properties of a Partially Sintered Alumina,, Journal of the European Ceramic Society, vol. 15, no. 8, p.769–775, (1995).

DOI: 10.1016/0955-2219(95)00045-v

Google Scholar

[15] M. Amne Elahi and S.G. Shabestari, Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy,, Transactions of Nonferrous Metals Society of China (English Edition), vol. 26, no. 4, p.956–965, (2016).

DOI: 10.1016/s1003-6326(16)64191-2

Google Scholar