[1]
T.M. Pollock, Weight loss with magnesium alloys, Science, 328 (2010) 986-987.
Google Scholar
[2]
J.F. Song, J. She, D.L. Chen, F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, Journal of Magnesium and Alloys, 8 (2020) 1-41.
DOI: 10.1016/j.jma.2020.02.003
Google Scholar
[3]
H. Friedrich, S. Schumann, Research for a new age of magnesium, in the automotive industry, Journal of Materials Processing Technology, 117 (2001) 276-281.
DOI: 10.1016/s0924-0136(01)00780-4
Google Scholar
[4]
L. Gao, R. Chen, E. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, Journal of Alloys and Compounds, 481 (2009) 379-384.
DOI: 10.1016/j.jallcom.2009.02.131
Google Scholar
[5]
J. Li, Z. He, P. Fu, Y. Wu, L. Peng, W. Ding, Heat treatment and mechanical properties of a high-strength cast Mg–Gd–Zn alloy, Materials Science and Engineering: A, 651 (2016) 745-752.
DOI: 10.1016/j.msea.2015.11.021
Google Scholar
[6]
Z. Su, C. Liu, Y. Wan, Microstructures and mechanical properties of high performance Mg-4Y-2.4Nd-0.2Zn-0.4Zr alloy, Materials & design, 45 (2013) 466-472.
DOI: 10.1016/j.matdes.2012.07.023
Google Scholar
[7]
Z.-q. Wang, B. Zhang, D.-j. Li, R. Fritzsch, X.-q. Zeng, H.J. Roven, W.-j. Ding, Effect of heat treatment on microstructures and mechanical properties of high vacuum die casting Mg-8Gd-3Y-0.4Zr magnesium alloy, Transactions of Nonferrous Metals Society of China, 24 (2014) 3762-3768.
DOI: 10.1016/s1003-6326(14)63530-5
Google Scholar
[8]
V. Janik, D. Yin, Q. Wang, S. He, C. Chen, Z. Chen, C. Boehlert, The elevated-temperature mechanical behavior of peak-aged Mg–10Gd–3Y–0.4 Zr Alloy, Materials Science and Engineering: A, 528 (2011) 3105-3112.
DOI: 10.1016/j.msea.2010.12.089
Google Scholar
[9]
Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, M.X. Liang, Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 454 (2007) 274-280.
DOI: 10.1016/j.msea.2006.11.047
Google Scholar
[10]
G. Yang, S. Luo, S. Liu, L. Xiao, W. Jie, Microstrctural evolution, phase constitution and mechanical properties of directionally solidified Mg-5.5Zn-xGd (x = 0.8, 2.0, and 4.0) alloys, Journal of Alloys & Compounds, (2017), 2017, 725: 145-154.
DOI: 10.1016/j.jallcom.2017.05.129
Google Scholar
[11]
Shaojun, Liu, Guangyu, Yang, Wanqi, Jie, Microstructure, Microsegregation, and Mechanical Properties of Directional Solidified Mg–3.0Nd–1.5Gd Alloy, Acta Metallurgica Sinica(English Letters), (2014) 1134-1143.
DOI: 10.1007/s40195-014-0151-2
Google Scholar
[12]
S. Luo, G. Yang, S. Liu, J. Wang, J. Li, W. Jie, Microstructure evolution and mechanical properties of directionally solidified Mg-xGd (x=0.8,1.5, and 2.5) alloys, Materials Science & Engineering A, 662 (2016) 241-250.
DOI: 10.1016/j.msea.2016.03.065
Google Scholar
[13]
S. Liu, G. Yang, X. Lei, S. Luo, W. Jie, Effects of the Growth Rate on Microstructures and Room Temperature Mechanical Properties of Directionally Solidified Mg-5.2Zn Alloy, Jom, 68 (2016) 3214-3223.
DOI: 10.1007/s11837-016-1965-3
Google Scholar
[14]
H. Xie, X. Lin, C. Yin, H. Wu, H. Yang, Y. Shang, G. Xu, High temperature mechanical properties and fracture mechanism of magnesium alloy with columnar crystal structure, The Chinese Journal of Nonferrous Metals, 27 (2017) 1862-1871.
Google Scholar
[15]
M. Paliwal, I.H. Jung, The evolution of the growth morphology in Mg–Al alloys depending on the cooling rate during solidification, Acta Materialia, 61 (2013) 4848-4860.
DOI: 10.1016/j.actamat.2013.04.063
Google Scholar
[16]
X.W. Zheng, A.A. Luo, C. Zhang, J. Dong, R.A. Waldo, Directional Solidification and Microsegregation in a Magnesium-Aluminum-Calcium Alloy, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 43A (2012) 3239-3248.
DOI: 10.1007/s11661-012-1159-8
Google Scholar
[17]
J.H. Wang, G.Y. Yang, S.J. Liu, W.Q. Jie, Microstructure and room temperature mechanical properties of directionally solidified Mg–2.35Gd magnesium alloy, Transactions of Nonferrous Metals Society of China, 26 (2016) 1294-1300.
DOI: 10.1016/s1003-6326(16)64231-0
Google Scholar
[18]
W. Kurz, D.J. Fisher, Dendrite growth at the limit of stability: tip radius and spacing, Acta Metallurgica, 29 (1981) 11-20.
DOI: 10.1016/0001-6160(81)90082-1
Google Scholar
[19]
O.L. Rocha, C.A. Siqueira, A. Garcia, Cellular/dendritic transition during unsteady-state unidirectional solidification of Sn-Pb alloys, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 347 (2003) 59-69.
DOI: 10.1016/s0921-5093(02)00581-6
Google Scholar
[20]
J. Yang, W.L. Xiao, L.D. Wang, Y.M. Wu, L.M. Wang, H.J. Zhang, Influences of Gd on the microstructure and strength of Mg-4.5Zn alloy, Materials Characterization, 59 (2008) 1667-1674.
DOI: 10.1016/j.matchar.2008.03.007
Google Scholar
[21]
D. HJ, Solidification and Casting of Metals: London: The Metal Society, (1979).
Google Scholar
[22]
R. Trivedi. Interdendritic Spacing Part II. A comparison of theory and experiment [J]. Metallurgical and Materials Transactions A. 1984, 15(6): 977-982.
DOI: 10.1007/bf02644689
Google Scholar
[23]
S. Yang, W.D. Huang, X. Lin, Y.P. Su, Y. Zhou, On cellular spacing selection of Cu-Mn alloy under ultra-high temperature gradient and rapid solidification condition, Scripta Materialia, 42 (2000) 543-548.
DOI: 10.1016/s1359-6462(99)00395-4
Google Scholar
[24]
J. Lapin, A. Klimova, R. Velisek, M. Kursa, Directional solidification of Ni-Al-Cr-Fe alloy, Scripta Materialia, 37 (1997) 85-91.
DOI: 10.1016/s1359-6462(97)00069-9
Google Scholar
[25]
H. Kaya, E. Cadirli, M. Gunduz, Directional cellular growth of Al-2 wt% Li bulk samples, Appl. Phys. A-Mater. Sci. Process., 94 (2009) 155-165.
DOI: 10.1007/s00339-008-4714-9
Google Scholar
[26]
U. Boyuk, S. Engin, H. Kaya, E. Cadirli, N. Marasli, K. Keslioglu, A study of microstructure and solidification behaviour of Zn-Cu alloy, Kov. Mater.-Met. Mater., 48 (2010) 117-126.
DOI: 10.4149/km_2010_2_117
Google Scholar
[27]
Y.J. Du, J. Shen, Y.L. Xiong, Z.W. Liu, Q. Zhao, H.Z. Fu, Determining the Effects of Growth Velocity on Microstructure and Mechanical Properties of Ti-47Al Alloy using Electromagnetic Confinement and Directional Solidification, Jom, 66 (2014) 1914-1922.
DOI: 10.1007/s11837-014-1051-7
Google Scholar
[28]
M. Gunduz, E. Cadirli. Directional solidification of aluminium–copper alloys [J]. Materials Science & Engineering A, 2002, 327(2): 167-185.
Google Scholar
[29]
H. Kaya, E. Çadırlı, M. Gündüz, Dendritic Growth in an Aluminum-Silicon Alloy, Journal of Materials Engineering & Performance, 16 (2007) 12-21.
DOI: 10.1007/s11665-006-9002-2
Google Scholar
[30]
E. Cadirli, M. Gunduz. The directional solidification of Pb-Sn alloys [J]. Journal of Materials Science, 2000, 35(15): 3837-3848.
Google Scholar
[31]
A. Kermanpur, N. Varahraam, E. Engilehei, M. Mohammadzadeh, P. Davami, Directional solidification of Ni base superalloy IN738LC to improve creep properties, Materials Science and Technology, 16 (2000) 579-586.
DOI: 10.1179/026708300101508117
Google Scholar
[32]
H. Jacobi, K. Schwerdtfeger. Dendrite morphology of steady-state unidirectionally solidified steel [J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1976, 7(6): 811-820.
DOI: 10.1007/bf02644078
Google Scholar
[33]
M. Rappaz, W.J. Boettinger, On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients, Acta Materialia, 47 (1999) 3205-3219.
DOI: 10.1016/s1359-6454(99)00188-3
Google Scholar
[34]
S. Khan, A. Ourdjini, Q.S. Hamed, M.A.A. Najafabadi, R. Elliott, Hardness and mechanical property relationships in directionally solidified aluminum-silicon eutectic alloys with different silicon morphologies [J]. Journal of Materials Science, 1993, 28(21): 5957-62.
DOI: 10.1007/bf00365208
Google Scholar
[35]
H. Kaya, E. Cadirli, M. Gunduz, A. Ulgen, Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy, Journal of Materials Engineering and Performance, 12 (2003) 544-551.
DOI: 10.1361/105994903100277201
Google Scholar
[36]
E. Cadirli, U. Boyuk, H. Kaya, N. Marasli, K. Keslioglu, S. Akbulut, Y. Ocak, The effect of growth rate on microstructure and microindentation hardness in the In-Bi-Sn ternary alloy at low melting point, Journal of Alloys and Compounds, 470 (2009) 150-156.
DOI: 10.1016/j.jallcom.2008.02.056
Google Scholar
[37]
J. Lapin, L. Ondrúš, M. Nazmy, Directional solidification of intermetallic Ti–46Al–2W–0.5Si alloy in alumina moulds, Intermetallics, 10 (2002) 1019-1031.
DOI: 10.1016/s0966-9795(02)00119-x
Google Scholar
[38]
Jianglei, Fan, Jianxiu, Liu, Shuxia, Tian, Shen, Wu, Shengyong, Wang, Effect of solidification parameters on microstructural characteristics and mechanical properties of directionally solidified binary TiAl alloy, Journal of Alloys & Compounds, (2015), 650: 8-14.
DOI: 10.1016/j.jallcom.2015.05.160
Google Scholar
[39]
C. Zhang, D. Ma, K.S. Wu, H.B. Cao, G.P. Cao, S. Kou, Y.A. Chang, X.Y. Yan, Microstructure and microsegregation in directionally solidified Mg–4Al alloy, Intermetallics, 15 (2007) 1395-1400.
DOI: 10.1016/j.intermet.2007.01.009
Google Scholar
[40]
Q.M. Peng, X.L. Hou, L.D. Wang, Y.M. Wu, Z.Y. Cao, L.M. Wang, Microstructure and mechanical properties of high performance Mg-Gd based alloys, Materials & Design, 30 (2009) 292-296.
DOI: 10.1016/j.matdes.2008.04.069
Google Scholar
[41]
Xingwei, Zheng, Alan, A., Luo, Chuan, Zhang, Jie, Dong, Richard, Directional Solidification and Microsegregation in a Magnesium-Aluminum-Calcium Alloy, Metallurgical & Materials Transactions A, (2012), 43(9): 3239-3248.
DOI: 10.1007/s11661-012-1159-8
Google Scholar
[42]
M.M.J. Behnam, P. Davami, N. Varahram, Effect of cooling rate on microstructure and mechanical properties of gray cast iron, Materials Science & Engineering A, 528 (2010) pp.583-588.
DOI: 10.1016/j.msea.2010.09.087
Google Scholar
[43]
M., Tiryakioğlu, J.S., Robinson, M.A., Salazar-Guapuriche, Y.Y., Zhao, P.D., Eason, Hardness–strength relationships in the aluminum alloy 7010, Materials Science & Engineering A, (2015), 631: 196-200.
DOI: 10.1016/j.msea.2015.02.049
Google Scholar
[44]
E.J. Pavlina, C.J.V. Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, Journal of Materials Engineering & Performance, 17 (2008) 888-893.
DOI: 10.1007/s11665-008-9225-5
Google Scholar