Dependence of Microstructures and Mechanical Properties on the Growth Rate and Composition in Directionally Solidified Mg-Gd Alloys

Article Preview

Abstract:

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 327)

Pages:

82-97

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.M. Pollock, Weight loss with magnesium alloys, Science, 328 (2010) 986-987.

Google Scholar

[2] J.F. Song, J. She, D.L. Chen, F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, Journal of Magnesium and Alloys, 8 (2020) 1-41.

DOI: 10.1016/j.jma.2020.02.003

Google Scholar

[3] H. Friedrich, S. Schumann, Research for a new age of magnesium, in the automotive industry, Journal of Materials Processing Technology, 117 (2001) 276-281.

DOI: 10.1016/s0924-0136(01)00780-4

Google Scholar

[4] L. Gao, R. Chen, E. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, Journal of Alloys and Compounds, 481 (2009) 379-384.

DOI: 10.1016/j.jallcom.2009.02.131

Google Scholar

[5] J. Li, Z. He, P. Fu, Y. Wu, L. Peng, W. Ding, Heat treatment and mechanical properties of a high-strength cast Mg–Gd–Zn alloy, Materials Science and Engineering: A, 651 (2016) 745-752.

DOI: 10.1016/j.msea.2015.11.021

Google Scholar

[6] Z. Su, C. Liu, Y. Wan, Microstructures and mechanical properties of high performance Mg-4Y-2.4Nd-0.2Zn-0.4Zr alloy, Materials & design, 45 (2013) 466-472.

DOI: 10.1016/j.matdes.2012.07.023

Google Scholar

[7] Z.-q. Wang, B. Zhang, D.-j. Li, R. Fritzsch, X.-q. Zeng, H.J. Roven, W.-j. Ding, Effect of heat treatment on microstructures and mechanical properties of high vacuum die casting Mg-8Gd-3Y-0.4Zr magnesium alloy, Transactions of Nonferrous Metals Society of China, 24 (2014) 3762-3768.

DOI: 10.1016/s1003-6326(14)63530-5

Google Scholar

[8] V. Janik, D. Yin, Q. Wang, S. He, C. Chen, Z. Chen, C. Boehlert, The elevated-temperature mechanical behavior of peak-aged Mg–10Gd–3Y–0.4 Zr Alloy, Materials Science and Engineering: A, 528 (2011) 3105-3112.

DOI: 10.1016/j.msea.2010.12.089

Google Scholar

[9] Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, M.X. Liang, Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 454 (2007) 274-280.

DOI: 10.1016/j.msea.2006.11.047

Google Scholar

[10] G. Yang, S. Luo, S. Liu, L. Xiao, W. Jie, Microstrctural evolution, phase constitution and mechanical properties of directionally solidified Mg-5.5Zn-xGd (x = 0.8, 2.0, and 4.0) alloys, Journal of Alloys & Compounds, (2017), 2017, 725: 145-154.

DOI: 10.1016/j.jallcom.2017.05.129

Google Scholar

[11] Shaojun, Liu, Guangyu, Yang, Wanqi, Jie, Microstructure, Microsegregation, and Mechanical Properties of Directional Solidified Mg–3.0Nd–1.5Gd Alloy, Acta Metallurgica Sinica(English Letters), (2014) 1134-1143.

DOI: 10.1007/s40195-014-0151-2

Google Scholar

[12] S. Luo, G. Yang, S. Liu, J. Wang, J. Li, W. Jie, Microstructure evolution and mechanical properties of directionally solidified Mg-xGd (x=0.8,1.5, and 2.5) alloys, Materials Science & Engineering A, 662 (2016) 241-250.

DOI: 10.1016/j.msea.2016.03.065

Google Scholar

[13] S. Liu, G. Yang, X. Lei, S. Luo, W. Jie, Effects of the Growth Rate on Microstructures and Room Temperature Mechanical Properties of Directionally Solidified Mg-5.2Zn Alloy, Jom, 68 (2016) 3214-3223.

DOI: 10.1007/s11837-016-1965-3

Google Scholar

[14] H. Xie, X. Lin, C. Yin, H. Wu, H. Yang, Y. Shang, G. Xu, High temperature mechanical properties and fracture mechanism of magnesium alloy with columnar crystal structure, The Chinese Journal of Nonferrous Metals, 27 (2017) 1862-1871.

Google Scholar

[15] M. Paliwal, I.H. Jung, The evolution of the growth morphology in Mg–Al alloys depending on the cooling rate during solidification, Acta Materialia, 61 (2013) 4848-4860.

DOI: 10.1016/j.actamat.2013.04.063

Google Scholar

[16] X.W. Zheng, A.A. Luo, C. Zhang, J. Dong, R.A. Waldo, Directional Solidification and Microsegregation in a Magnesium-Aluminum-Calcium Alloy, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 43A (2012) 3239-3248.

DOI: 10.1007/s11661-012-1159-8

Google Scholar

[17] J.H. Wang, G.Y. Yang, S.J. Liu, W.Q. Jie, Microstructure and room temperature mechanical properties of directionally solidified Mg–2.35Gd magnesium alloy, Transactions of Nonferrous Metals Society of China, 26 (2016) 1294-1300.

DOI: 10.1016/s1003-6326(16)64231-0

Google Scholar

[18] W. Kurz, D.J. Fisher, Dendrite growth at the limit of stability: tip radius and spacing, Acta Metallurgica, 29 (1981) 11-20.

DOI: 10.1016/0001-6160(81)90082-1

Google Scholar

[19] O.L. Rocha, C.A. Siqueira, A. Garcia, Cellular/dendritic transition during unsteady-state unidirectional solidification of Sn-Pb alloys, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 347 (2003) 59-69.

DOI: 10.1016/s0921-5093(02)00581-6

Google Scholar

[20] J. Yang, W.L. Xiao, L.D. Wang, Y.M. Wu, L.M. Wang, H.J. Zhang, Influences of Gd on the microstructure and strength of Mg-4.5Zn alloy, Materials Characterization, 59 (2008) 1667-1674.

DOI: 10.1016/j.matchar.2008.03.007

Google Scholar

[21] D. HJ, Solidification and Casting of Metals: London: The Metal Society, (1979).

Google Scholar

[22] R. Trivedi. Interdendritic Spacing Part II. A comparison of theory and experiment [J]. Metallurgical and Materials Transactions A. 1984, 15(6): 977-982.

DOI: 10.1007/bf02644689

Google Scholar

[23] S. Yang, W.D. Huang, X. Lin, Y.P. Su, Y. Zhou, On cellular spacing selection of Cu-Mn alloy under ultra-high temperature gradient and rapid solidification condition, Scripta Materialia, 42 (2000) 543-548.

DOI: 10.1016/s1359-6462(99)00395-4

Google Scholar

[24] J. Lapin, A. Klimova, R. Velisek, M. Kursa, Directional solidification of Ni-Al-Cr-Fe alloy, Scripta Materialia, 37 (1997) 85-91.

DOI: 10.1016/s1359-6462(97)00069-9

Google Scholar

[25] H. Kaya, E. Cadirli, M. Gunduz, Directional cellular growth of Al-2 wt% Li bulk samples, Appl. Phys. A-Mater. Sci. Process., 94 (2009) 155-165.

DOI: 10.1007/s00339-008-4714-9

Google Scholar

[26] U. Boyuk, S. Engin, H. Kaya, E. Cadirli, N. Marasli, K. Keslioglu, A study of microstructure and solidification behaviour of Zn-Cu alloy, Kov. Mater.-Met. Mater., 48 (2010) 117-126.

DOI: 10.4149/km_2010_2_117

Google Scholar

[27] Y.J. Du, J. Shen, Y.L. Xiong, Z.W. Liu, Q. Zhao, H.Z. Fu, Determining the Effects of Growth Velocity on Microstructure and Mechanical Properties of Ti-47Al Alloy using Electromagnetic Confinement and Directional Solidification, Jom, 66 (2014) 1914-1922.

DOI: 10.1007/s11837-014-1051-7

Google Scholar

[28] M. Gunduz, E. Cadirli. Directional solidification of aluminium–copper alloys [J]. Materials Science & Engineering A, 2002, 327(2): 167-185.

Google Scholar

[29] H. Kaya, E. Çadırlı, M. Gündüz, Dendritic Growth in an Aluminum-Silicon Alloy, Journal of Materials Engineering & Performance, 16 (2007) 12-21.

DOI: 10.1007/s11665-006-9002-2

Google Scholar

[30] E. Cadirli, M. Gunduz. The directional solidification of Pb-Sn alloys [J]. Journal of Materials Science, 2000, 35(15): 3837-3848.

Google Scholar

[31] A. Kermanpur, N. Varahraam, E. Engilehei, M. Mohammadzadeh, P. Davami, Directional solidification of Ni base superalloy IN738LC to improve creep properties, Materials Science and Technology, 16 (2000) 579-586.

DOI: 10.1179/026708300101508117

Google Scholar

[32] H. Jacobi, K. Schwerdtfeger. Dendrite morphology of steady-state unidirectionally solidified steel [J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1976, 7(6): 811-820.

DOI: 10.1007/bf02644078

Google Scholar

[33] M. Rappaz, W.J. Boettinger, On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients, Acta Materialia, 47 (1999) 3205-3219.

DOI: 10.1016/s1359-6454(99)00188-3

Google Scholar

[34] S. Khan, A. Ourdjini, Q.S. Hamed, M.A.A. Najafabadi, R. Elliott, Hardness and mechanical property relationships in directionally solidified aluminum-silicon eutectic alloys with different silicon morphologies [J]. Journal of Materials Science, 1993, 28(21): 5957-62.

DOI: 10.1007/bf00365208

Google Scholar

[35] H. Kaya, E. Cadirli, M. Gunduz, A. Ulgen, Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy, Journal of Materials Engineering and Performance, 12 (2003) 544-551.

DOI: 10.1361/105994903100277201

Google Scholar

[36] E. Cadirli, U. Boyuk, H. Kaya, N. Marasli, K. Keslioglu, S. Akbulut, Y. Ocak, The effect of growth rate on microstructure and microindentation hardness in the In-Bi-Sn ternary alloy at low melting point, Journal of Alloys and Compounds, 470 (2009) 150-156.

DOI: 10.1016/j.jallcom.2008.02.056

Google Scholar

[37] J. Lapin, L. Ondrúš, M. Nazmy, Directional solidification of intermetallic Ti–46Al–2W–0.5Si alloy in alumina moulds, Intermetallics, 10 (2002) 1019-1031.

DOI: 10.1016/s0966-9795(02)00119-x

Google Scholar

[38] Jianglei, Fan, Jianxiu, Liu, Shuxia, Tian, Shen, Wu, Shengyong, Wang, Effect of solidification parameters on microstructural characteristics and mechanical properties of directionally solidified binary TiAl alloy, Journal of Alloys & Compounds, (2015), 650: 8-14.

DOI: 10.1016/j.jallcom.2015.05.160

Google Scholar

[39] C. Zhang, D. Ma, K.S. Wu, H.B. Cao, G.P. Cao, S. Kou, Y.A. Chang, X.Y. Yan, Microstructure and microsegregation in directionally solidified Mg–4Al alloy, Intermetallics, 15 (2007) 1395-1400.

DOI: 10.1016/j.intermet.2007.01.009

Google Scholar

[40] Q.M. Peng, X.L. Hou, L.D. Wang, Y.M. Wu, Z.Y. Cao, L.M. Wang, Microstructure and mechanical properties of high performance Mg-Gd based alloys, Materials & Design, 30 (2009) 292-296.

DOI: 10.1016/j.matdes.2008.04.069

Google Scholar

[41] Xingwei, Zheng, Alan, A., Luo, Chuan, Zhang, Jie, Dong, Richard, Directional Solidification and Microsegregation in a Magnesium-Aluminum-Calcium Alloy, Metallurgical & Materials Transactions A, (2012), 43(9): 3239-3248.

DOI: 10.1007/s11661-012-1159-8

Google Scholar

[42] M.M.J. Behnam, P. Davami, N. Varahram, Effect of cooling rate on microstructure and mechanical properties of gray cast iron, Materials Science & Engineering A, 528 (2010) pp.583-588.

DOI: 10.1016/j.msea.2010.09.087

Google Scholar

[43] M., Tiryakioğlu, J.S., Robinson, M.A., Salazar-Guapuriche, Y.Y., Zhao, P.D., Eason, Hardness–strength relationships in the aluminum alloy 7010, Materials Science & Engineering A, (2015), 631: 196-200.

DOI: 10.1016/j.msea.2015.02.049

Google Scholar

[44] E.J. Pavlina, C.J.V. Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, Journal of Materials Engineering & Performance, 17 (2008) 888-893.

DOI: 10.1007/s11665-008-9225-5

Google Scholar