Comparison the Preparation Methods of Powder Feedstock for Laser Powder Bed Fusion

Article Preview

Abstract:

Four various methods of powder feedstock preparation for laser powder bed fusion are compared. Application of commercial spherical powder leads to the formation of single-phased state. Powder mechanically alloyed during 14 minutes in air atmosphere provides conditions for the formation of double-phased state with nonuniform distribution of components in the samples. Mechanical alloying in Ar-atmosphere during 30 minutes leads to the formation of double-phased state with more uniform distribution of components and precipitations of Cr2O3. Preliminary mechanical sieving of the powder allows to produce double-phased samples with nonuniform distribution of components comparable with that in samples produced from powder mechanically alloyed during 14 minutes in air atmosphere. Microhardness of all the studied samples produced from all the studied powders was comparable. All the proposed methods of powder feedstock preparation are applicable in laser powder bed fusion depending on the required properties, elemental and phase composition of the final product.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 328)

Pages:

63-71

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Polema. Joint Stock Company [Electronic resource]. 2021. URL: http://www.polema.net (access date: 23.04.2021).

Google Scholar

[2] K. Zhuravleva, S. Scudino, M.S. Khoshkhoo, A. Gebert, M. Calin, L. Schultz, J. Eckert, Mechanical Alloying of β‐Type Ti-Nb for Biomedical Applications, Adv. Eng. Mater. 15, 4 (2013) 262-266.

DOI: 10.1002/adem.201200117

Google Scholar

[3] Zh.G. Kovalevskaya, Yu.P. Sharkeev, M.A. Khimich, M.A. Korchagin, V.A. Bataev, Ti-Nb Powder Alloys in the Additive Technologies, Nanosci. Technol.: An Int. J. 8(3) (2017) 203-210.

DOI: 10.1615/nanoscitechnolintj.v8.i3.30

Google Scholar

[4] M.A. Surmeneva, A. Koptyug, D. Khrapov, Yu.F. Ivanov, T. Mishurova, S. Evsevleev, O. Prymak, K. Loza, M. Epple, G. Bruno, R.A. Surmenev, In situ synthesis of a binary Ti–10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powders, J. Mater. Process. Technol. 282 (2020) 116646. Doi: https://doi.org/10.1016/j.jmatprotec.2020.116646.

DOI: 10.1016/j.jmatprotec.2020.116646

Google Scholar

[5] M.A. Khimich, E.A. Ibragimov, N.A. Saprykina, Yu.P. Sharkeev, A.A. Saprykin, Co-Cr-Mo alloy produced via powder bed laser fusion, AIP Conference Proceedings. 2310 (2020) 020144. Doi: https://doi.org/10.1063/5.0034111.

DOI: 10.1063/5.0034111

Google Scholar

[6] D. Wei, Y. Koizumi, A. Chiba, K. Ueki, K. Ueda, T. Narushima, Y. Tsutsumi, T. Hanawa, Heterogeneous microstructures and corrosion resistance of biomedical Co-Cr-Mo alloy fabricated by electron beam melting (EBM), Additive Manuf. 24 (2018) 103-114.

DOI: 10.1016/j.addma.2018.09.006

Google Scholar

[7] M.A. Khimich, K.A. Prosolov, T. Mishurova, S. Evsevleev, X. Monforte, A.H. Teuschl, P. Slezak, E.A. Ibragimov, A.A. Saprykin, Z.G. Kovalevskaya, A.I. Dmitriev, G. Bruno, Y.P. Sharkeev, Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects, Nanomater. 11 (2021) 1159. Doi: https://doi.org/10.3390/nano11051159.

DOI: 10.3390/nano11051159

Google Scholar

[8] A. J. Saldı´var-Garcıa, H. F. Lo´pez, Microstructural effects on the wear resistance of wrought and as-cast Co-Cr-Mo-C implant alloys, J. Biomed. Mater. Res. 74A(2) (2005) 269-274.

DOI: 10.1002/jbm.a.30392

Google Scholar

[9] Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, A. Chiba, Effects of microstructures on the sliding behavior of hot-pressed CoCrMo alloys, Wear 319 (2014) 200–21.

DOI: 10.1016/j.wear.2014.07.022

Google Scholar

[10] Z. Guoqing, Y. Yongqiang, L. Hui, S. Changhui, Z. Zimian, Study on the Quality and Performance of CoCrMo Alloy Parts Manufactured by Selective Laser Melting, JMEPEG 26 (2017) 2869–2877.

DOI: 10.1007/s11665-017-2716-5

Google Scholar

[11] F.Z. Hassani, M. Ketabchi, S. Bruschi, A. Ghiotti, Effects of carbide precipitation on the microstructural and tribological properties of Co–Cr–Mo–C medical implants after thermal treatment, J Mater Sci 51 (2016) 4495–4508.

DOI: 10.1007/s10853-016-9762-5

Google Scholar

[12] R. Liu, J. Yao, Q. Zhang, M.X. Yao, R. Collier, Effects of molybdenum content on the wear/erosion and corrosion performance of low-carbon Stellite alloys, Mater. & Design 78 (2015) 95–106. Doi: http://dx.doi.org/10.1016/j.matdes.2015.04.030.

DOI: 10.1016/j.matdes.2015.04.030

Google Scholar

[13] M. Mori, K. Yamanaka, A. Chiba, Phase decomposition in biomedical Co–29Cr–6Mo–0.2N alloy during isothermal heat treatment at 1073 K, J. Alloys and Compounds 590 (2014) 411–416. Doi: http://dx.doi.org/10.1016/j.jallcom.2013.12.126.

DOI: 10.1016/j.jallcom.2013.12.126

Google Scholar

[14] Zh.G. Kovalevskaya, M.A. Khimich, A.V. Belyakov, Evaluation of physical-mechanical properties of Ti-45Nb specimens obtained by selective laser melting, KEM. 743 (2017) 9-12.

DOI: 10.4028/www.scientific.net/kem.743.9

Google Scholar

[15] M.A. Khimich, E.A. Ibragimov, V.I. Yakovlev, A.I. Tolmachev, V.V. Chebodaeva, P.V. Uvarkin, N.A. Saprykina, A.A. Saprykin, Yu.P. Sharkeev, Structure and Phase Composition of Additive Co-Cr-Mo Alloy Affected by the Duration of Mechanical Alloying the Composite Powder, AIP Conference Proceedings. (2021). In press.

DOI: 10.1063/5.0084867

Google Scholar

[16] M. Zhang, Y. Yang, C. Song, Y. Bai, Z. Xiao, An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting, J. Alloys and Compounds. 750 (2018) 878-886. Doi: https://doi.org/10.1016/j.jallcom.2018.04.054.

DOI: 10.1016/j.jallcom.2018.04.054

Google Scholar

[17] M. Mori, K. Yamanaka, S. Sato, S. Tsubaki, K. Satoh, M. Kumagai, M. Imafuku, T. Shobu, A. Chiba, Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co-Cr-Mo alloys by introducing parent phase lattice defects, J. Mech. Behav. Biomed. Mater. 90 (2019) 523–529. Doi: https://doi.org/10.1016/j.jmbbm.2018.10.038.

DOI: 10.1016/j.jmbbm.2018.10.038

Google Scholar

[18] C.P. Emerson, The Microstructure and the Electrochemical Behavior of Cobalt Chromium Molybdenum Alloys from Retrieved Hip Implants, FIU Electronic Theses and Dissertations. 2230 (2015).

DOI: 10.25148/etd.fidc000069

Google Scholar

[19] The periodic table of the elements [Electronic resource]. 2021. URL: https://www.webelements.com/cobalt/crystal_structure.html (access date: 20.08.2021).

Google Scholar

[20] M. Béreš, C.C. Silva, P.W.C. Sarvezuk, L. Wu, L.H.M. Antunes, A.L. Jardini, A.L.M. Feitosa, J. Žilková, H.F.G. de Abreu, R.M. Filho, Mechanical and phase transformation behavior of biomedical Co-Cr-Mo alloy fabricated by direct metal laser sintering, Mater. Sci. Eng. A 714 (2018) 36–42. Doi: https://doi.org/10.1016/j.msea.2017.12.087.

DOI: 10.1016/j.msea.2017.12.087

Google Scholar

[21] A.J. Saldivar-Garcia, H.F. Lopez, Temperature effects on the lattice constants and crystal structure of a Co-27Cr-5Mo low-carbon alloy, Metal. and mater. Transac. A. 35A (2004) 2517-2523.

DOI: 10.1007/s11661-006-0232-6

Google Scholar

[22] C. Suryanarayana, Mechanical alloying and Milling, Progress in Mater. Sci. 46 (2001) 1-184.

Google Scholar

[23] T.F. Grigorieva, A.P. Barinova, N.Z. Lyakhov, Mechanochemical synthesis in metallic systems, Parallel, Novosibirsk, 2008. 309 p. (in Russian).

Google Scholar

[24] P. Huang, H.F. Lopez, Strain induced ε-martensite in a Co–Cr–Mo alloy: grain size effects, Mater. Letters. 39 (1999) 244–248.

DOI: 10.1016/s0167-577x(99)00021-x

Google Scholar

[25] S. Özel, E. Vural, The microstructure and hardness properties of plasma sprayed Cr2O3/Al2O3coatings, J. Optoelectronics Adv. Mater. 18(11-12) (2016) 1052-1056.

Google Scholar

[26] M. Podrez-Radziszewska, K. Haimann, W. Dudziński, M. Morawska-Sołtysik, Characteristic of intermetallic phases in cast dental CoCrMo alloy, Archives of foundry engineering. 10(3) (2010) 51-56.

Google Scholar

[27] C. Song, M. Zhang, Y. Yanga, D. Wang, Y. Jia-kuo, Morphology and properties of CoCrMo parts fabricated by selective laser melting, Mater. Sci. Eng. A 713 (2018) 206–213. Doi: https://doi.org/10.1016/j.msea.2017.12.035.

DOI: 10.1016/j.msea.2017.12.035

Google Scholar

[28] Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, N. Wakabayashi, Effect of heat-treatment temperature on microstructures and mechanical properties of Co–Cr–Mo alloys fabricated by selective laser melting, Mater. Sci. Eng. A 726 (2018) 21–31. Doi: https://doi.org/10.1016/j.msea.2018.04.048.

DOI: 10.1016/j.msea.2018.04.048

Google Scholar