[1]
Suslov A.G, Blumenstein V.Yu, Gurov R.V. eds. Tekhnologiya i instrumenty otdelochno-uprochnyayushchei obrabotki detalei poverkhnostnym plasticheskim deformirovaniem: spravochnik [Handbook of Technology and tools of parts finishing and hardening treatment by surface plastic deformation. Vol. 1]. Moscow: Machine building; 2014. 480 p.
Google Scholar
[2]
Klassen N.V, Klassen E.N, Myshlyaev M.M, Klubovich V.V, Kulak M.M. Formirovanie regulyarnykh nanostruktur sharikovoi obkatkoi metallov i perspektivy primenenii [Metals ball rolling regular nanostructures formation and application prospects]. In: Materials and nanomaterials deformation and destruction; 7-10 november 2017; Moscow; 2017. pp.279-281.
Google Scholar
[3]
Altenberger I. Deep Rolling - The Past, the Present and the Future. In: 9th International Conference on Shot Peening (ICSP9); January 2005; Paris; 2005. pp.144-155.
Google Scholar
[4]
Birger I.A. Ostatochnye napryazheniya [Residual stresses]. Moscow: State scientific and technical publishing machine-building literature house; 1963. 232 p.
Google Scholar
[5]
Gopinath A, Lim A, Nagarajan B, Wong C.C, Maiti R, Castagne S. Introduction of Enhanced Compressive Residual Stress Profiles in Aerospace Components Using Combined Mechanical Surface Treatments. IOP Conference Series: Materials Science and Engineering. 2016; 157. DOI 10.1088/1757-899X/157/1/012013.
DOI: 10.1088/1757-899x/157/1/012013
Google Scholar
[6]
Sadasivam B, Hizal A, Arola D. Abrasive Waterjet Peening With Elastic Prestress: Subsurface Residual Stress Distribution. In: ASME International Mechanical Engineering Congress and Exposition (IMECE 2007); 2007. DOI 10.1115/IMECE2007-43473.
DOI: 10.1115/imece2007-43473
Google Scholar
[7]
Saini S, Ahuja I.S, Sharma V.S. Modeling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. The International Journal of Advanced Manufacturing Technology. 2013; 65:667-678.
DOI: 10.1007/s00170-012-4206-0
Google Scholar
[8]
Yonezu A, Kusano R, Hiyoshi T, Chen Xi. A Method to Estimate Residual Stress in Austenitic Stainless Steel Using a Microindentation Test. Journal of Materials Engineering and Performance. 2015; 24:362–372.
DOI: 10.1007/s11665-014-1280-5
Google Scholar
[9]
Yuan Ma, Pingfa Feng, Jianfu Zhang, Zhijun Wu, Dingwen Yu Energy criteria for machining-induced residual stresses in face milling and their relation with cutting power. The International Journal of Advanced Manufacturing Technology. 2015; 81:1023–1032. DOI 10.1007/s00170-015-7278-9.
DOI: 10.1007/s00170-015-7278-9
Google Scholar
[10]
Kuznetsov V.P, Gorgots V.G. Nonlinear dynamics of the elastic smoothing of surfaces. Russian Engineering Research. 2008; 28:1201-1206. DOI 10.3103/S1068798X08120113.
DOI: 10.3103/s1068798x08120113
Google Scholar
[11]
Liou J.J, El-Wardany T.I. Finite Element Analysis of Residual Stress in Ti-6Al-4V Alloy Plate Induced by Deep Rolling Process under Complex Roller Path. International Journal of Manufacturing Engineering. 2014; Article ID 786354. DOI 10.1155/2014/786354.
DOI: 10.1155/2014/786354
Google Scholar
[12]
Sayahi M, Sghaier S, Belhadjsalah H. Finite element analysis of ball burnishing process: comparisons between numerical results and experiments. The International Journal of Advanced Manufacturing Technology. 2012;.
DOI: 10.1007/s00170-012-4599-9
Google Scholar
[13]
Altan T. Finite Element Modeling of Roller Burnishing Process. Manufacturing Technology. 2017; 54:237-240.
Google Scholar
[14]
Sartkulvanich P, Taylor A, Jasso F, Rodriguez C.A. Finite Element Modeling of Hard Roller Burnishing: An Analysis on the Effects of Process Parameters Upon Surface Finish and Residual Stresses. Journal of Manufacturing Science and Engineering. 2007; 129:705-716.
DOI: 10.1115/1.2738121
Google Scholar
[15]
Qin W.J, Dong C, Li X. Assessment of Bending Fatigue Strength of Crankshaft Sections with Consideration of Quenching Residual Stress. Journal of Materials Engineering and Performance. 2016; 25:938–947. DOI 10.1007/s11665-016-1890-1.
DOI: 10.1007/s11665-016-1890-1
Google Scholar
[16]
Huang X, Sun J, Li J. Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation. The International Journal of Advanced Manufacturing Technology. 2015; 77:1035-1041. DOI 10.1007/s00170-014-6533-9.
DOI: 10.1007/s00170-014-6533-9
Google Scholar
[17]
Makhalov M.S, Blumenstein V.Yu. The Surface Layer Mechanical Condition and Residual Stress Forming Model in Surface Plastic Deformation Process with the Hardened Body Effect Consideration. IOP Conf. Series: Materials Science and Engineering. 2017; 253:012009. DOI 10.1088/1757-899X/253/1/012009.
DOI: 10.1088/1757-899x/253/1/012009
Google Scholar
[18]
Smelyanskii V.M. Mekhanika uprochneniya detalei poverkhnostnym plasticheskim deformirovaniem [Surface plastic deformation parts hardening mechanics]. Moscow: Mechanical Engineering; 2002. 300 p.
Google Scholar
[19]
Blumenshtein V. Yu, Smelyanskii V.M. Mekhanika tekhnologicheskogo nasledovaniya na stadiyakh obrabotki i ekspluatatsii detalei mashin [Technological inheritance mechanics at the machine parts processing and operation stages]. Moscow: Mechanical Engineering-1; 2007. 400 p.
Google Scholar
[20]
Papshev D.D. Uprochnenie detalei obkatkoi sharikami [Rolling balls parts hardening]. Moscow: Mechanical Engineering; 1968. 132 p.
Google Scholar