Investigation of the Operational Durability of High Pressure Metal Hoses Made of Austenitic Steels

Article Preview

Abstract:

The reasons for the decrease in the operational resistance of high-pressure metal hoses made of austenitic steels are considered. The main cause of damage to metal high-pressure hoses was revealed, namely, the low performance of the metal protective braiding under the influence of an unfavorable environment. It has been established in the work that in the initial state the wire made of AISI 201 steel has a high strength (σ0.2 = 1370 MPa and σT = 1650 MPa) and has relatively low plastic characteristics (δ = 15 % и ψ = 40 %), since up to 40–60% deformation martensite is present in its structure. The resistance of steels of the austenitic class AISI 201 and AISI 316 to intergranular corrosion has been investigated. The effect of heat treatment on the mechanical and plastic properties of wire samples of ø made of AISI 201 steel has been investigated. Optimal heat treatment modes have been determined that increase the durability of the braid in an unfavorable environment and, consequently, the operational durability of metal hoses in general.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 328)

Pages:

1-8

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications / Designation: A 240/A 240M–04a. 2004. 12 p.

DOI: 10.1520/a0240_a0240m-13c

Google Scholar

[2] Specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications / SA-240/SA-240M. 2007. Section II, part A. 12 p.

DOI: 10.1520/a0240_a0240m-13c

Google Scholar

[3] http://www.goodner.ru/services/info/marks/.

Google Scholar

[4] Ma, Y., Li, Y., & Wang, Y.F. (2009) Corrosion of low carbon steel in atmospheric environments of different chloride content, Corrosion Science, 51(5), 997–1006.

DOI: 10.1016/j.corsci.2009.02.009

Google Scholar

[5] Li, L., Dong, C. F. Xiao, K. Yao, J. Z. & Li, X.G. (2014) Effect of pH on pitting corrosion of stainless steel welds in alkaline salt water, Construction and Building Materials, 68, 709–715.

DOI: 10.1016/j.conbuildmat.2014.06.090

Google Scholar

[6] Burjak, T.N., Jaroshenko, N.V. Taranenko A.A. (2015) Analiz materialovedcheskih aspektov v ocenke jekspluatacionnoj nadezhnosti svarnyh trub iz korrozionnostojkoj stali dlja kondensatorov AЕS, Jaderna ta radiacijna bezpeka, 2(66), 31-38.

Google Scholar

[7] Narivskij, A.Je., Belikov, S.B. (2006) Opredelenie pittingostojkosti stali AISI 304 v hloridsoderzhashhih sredah, kotorye prisutstvujut v rabote teploobmennikov, Fiziko-himicheskaja mehanika materialov, 6, 136–140.

Google Scholar

[8] Ul'janin, E.A. (1991) Korrozionnostojkie stali i splavy, Metallurgija, M., 256.

Google Scholar

[9] Solidor, N.A., Ivanov, V.P., Morgay, F.V. & Nosovsky, B.I. (2015) Investigation of corrosion resistance welds metal hose made of steels AISI 304 and AISI 316, Eastern-European Journal of Enterprise Technologies, 76(4/5), 33–39. doi: 10.15587/ 1729-4061.2015. 47035.

DOI: 10.15587/1729-4061.2015.47035

Google Scholar

[10] Panin, S.V., Kurs, M.G. (2012) Issledovanie korrozionnoj stojkosti nerzhavejushhih stalej v uslovijah umerenno teplogo klimata, Vestnik VIAM, 7, 4–9.

Google Scholar

[11] Tsutsumi, Y., Nishikata, A. & Tsuru, T. (2007) Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions, Corrosion Science, 49(3), 1394–1407.

DOI: 10.1016/j.corsci.2006.08.016

Google Scholar

[12] Gojhenberg, Ju.N. (1972) Prevrashhenija pri plasticheskoj deformacii i ih vlijanie na mehanicheskie svojstva, Voprosy proizvodstva i obrabotki stali, 107, 136-145.

Google Scholar

[13] Ivanov, V.P., Makarenko, N.A., Lavrova, E.V. & Ahieieva, M.V. (2020) Electric arc deposition of an anticorrosive layer with two strip electrodes. Solid State Phenomena, 303, 39–46. https://doi.org/10.4028/www.scientific.net/ssp.303.39.

DOI: 10.4028/www.scientific.net/ssp.303.39

Google Scholar

[14] Ivanov, V., Lavrova, E., Morgay, F. & Semkiv, O (2021) Investigation of the heat-affected zone properties during cladding of power equipment with austenitic materials using control mechanical impacts on the strip electrode, Materials Science Forum, 1038, 100-107. https://doi.org/10.4028/www.scientific.net/MSF.1038.100.

DOI: 10.4028/www.scientific.net/msf.1038.100

Google Scholar