In Situ Studies of Strain Fields in Titanium Welds under Tensile Loads by Digital Image Correlation Method

Article Preview

Abstract:

The paper reports changes in strain fields on welded sample surfaces from commercial pure titanium, joined by both laser beam welding (LBW) and gas tungsten arc welding (GTAW) procedures, under uniaxial tensile loads. Their dynamics were investigated by the digital image correlation method using a ‘Vic-3D’ optical system. In addition, stress-strain curves were drawn in both σengeng and σtruetrue coordinates. It was shown that the laser welded sample was characterized by a higher ultimate tensile strength to yield point ratio than the as-received one. The GTAW sample fractured under much less stresses than the LBW one.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 328)

Pages:

83-92

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.W. Collings, The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, (1984).

Google Scholar

[2] G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Metals Park, (1994).

Google Scholar

[3] A.A. Ilin, B.A. Kolachev, and I.S. Pol'kin, Titanium Alloys: Composition, Structure, Properties, VILS-MATI, Moscow, 2009. (in Russian).

Google Scholar

[4] D. Banerjee, J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(3) (2013) 844-879.

Google Scholar

[5] F.H. Froes (Ed.), Titanium. Physical Metallurgy, Processing and Applications, ASM International, Materials Park, (2015).

Google Scholar

[6] L.-C. Zhang and L.-Y. Chen, A review on biomedical titanium alloys: recent progress and prospect, Adv. Eng. Mater., 21(4) (2019) 1801215.

DOI: 10.1002/adem.201801215

Google Scholar

[7] M.X. Shorshorov, G.V. Nazarov, Welding of Titanium and its Alloys, Mashgiz, Moscow, 1959. (in Russian).

Google Scholar

[8] F.E. Tretyakov, Fusion Welding of Titanium and its Alloys, Mechanical Engineering, Moscow, 1968. (in Russian).

Google Scholar

[9] V.N. Moiseev, F.R. Kulikov, Y.G. Kirillov, L.V. Shokholova, Y.V. Vaskin, Welded Joints of Titanium Alloys, Metallurgy, Moscow, 1979. (in Russian).

Google Scholar

[10] W.A. Baeslack, D.W. Becker, F.H. Froes, Advances in titanium alloy welding metallurgy, J. Met. 5 (1984), pp.46-58.

DOI: 10.1007/bf03338455

Google Scholar

[11] S.T. Eickhoff, T.W. Eagar, Characterization of spatter in low-current GMAW of titanium alloy plate, Weld. J. 10 (1990) 382-s–388-s.

Google Scholar

[12] L. Hallum, W.A. Baeslack, Nature of grain refinement in titanium alloy welds by microcooler inoculation, Weld. J. 9 (1990) 326-s–336-s.

Google Scholar

[13] T. Mohandas, G.M. Reddy, Effect of frequency of pulsing in gas tungsten arc welding on the microstructure and mechanical properties of titanium alloy welds, J. Mater. Sci. Lett. 15 (1996) 626-628.

DOI: 10.1007/bf00579271

Google Scholar

[14] E.A. Skvortsov, Contraction of arc discharge in argon-arc welding of titanium alloys using halide fluxes, Weld. Int. 12 (1998) 979-982.

DOI: 10.1080/09507119809448546

Google Scholar

[15] E. Szczok, An investigation of arc welding of thick titanium plate, Weld. Int. 12(8) (1998) 598-603.

DOI: 10.1080/09507119809452021

Google Scholar

[16] E.A. Skvortsov, Effect of fluorides of alkali metals on processes in arc plasma when argon-arc welding titanium alloys, Weld. Int. 13(1) (1999) 77-80.

DOI: 10.1080/09507119909452060

Google Scholar

[17] S. Sundaresan, G.D.J. Ram, Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α–β titanium alloys, Sci. Technol. Weld. Join. 4(3) (1999) 151-160.

DOI: 10.1179/136217199101537699

Google Scholar

[18] Z. Yang, J.W. Elmer, J. Wong, T. Debroy, Evolution of titanium arc weldment macro and microstructures modeling and real time mapping of phases, Weld. J. 4 (2000) 97-s–112-s.

Google Scholar

[19] S. Lathabai, B.L. Jarvis, K.J. Barton, Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium, Mater. Sci. Eng. 299(1–2) (2001) 81-93.

DOI: 10.1016/s0921-5093(00)01408-8

Google Scholar

[20] Y.M. Zhang, P.J. Li, Modified active control of pulsed GMAW of metal transfer and titanium, Weld. J. 2 (2001) 54-s–61-s.

Google Scholar

[21] B.C. Lyasotskaya, Heat Treatment of Welded Joints of Titanium Alloys, Ekomet, Moscow, 2003. (in Russian).

Google Scholar

[22] S.H. Wang, M.D. Wei, Tensile properties of gas tungsten arc elements in commercially pure titanium, Ti–6Al–4V and Ti–15V–3Al–3Sn–3Cr alloys at different strain rates, Sci. Technol. Weld. Join. 9(5) (2004) 415-422.

DOI: 10.1179/136217104225021599

Google Scholar

[23] K.-S. Bang, G. Chirieleison, S. Liu, Gas tungsten arc welding of titanium using flux cored wire with magnesium fluoride, Sci. Technol. Weld. Join. 10(5) (2005) 617-623.

DOI: 10.1179/174329305x57509

Google Scholar

[24] L. Liu, X. Du, M. Zhu, G. Chen, Research on the microstructure and properties of weld repairs in TA15 titanium alloy, Mater. Sci. Eng. 445(6) (2007) 691-696.

DOI: 10.1016/j.msea.2006.10.001

Google Scholar

[25] J. Luck, J. Fulcer, Titanium welding 101: best GTA practices, Weld. J. 86(12) (2007) 26-31.

Google Scholar

[26] T. Otani, Titanium welding technology, Nippon Steel Tech. Rep. 95 (2007) 88-92.

Google Scholar

[27] R. Sutherlin, The welding of titanium and its alloys, Weld. J. 86 (12) (2007) 40-45.

Google Scholar

[28] V. Balasubramanian, V. Jayabalan, M. Balasubramanian, Effect of current pulsing on tensile properties of titanium alloy, Mater. Des. 29 (2008), 1459-1466.

DOI: 10.1016/j.matdes.2007.07.007

Google Scholar

[29] A.R. Shankar, G. Gopalakrishnan, V. Balusamy, U.K. Mudali, Effect of heat input on microstructural changes and corrosion behavior of commercially pure titanium welds in nitric acid medium, JMEPEG 18 (2009) 1116-1123.

DOI: 10.1007/s11665-008-9335-0

Google Scholar

[30] A.B. Short, Gas tungsten arc welding of α+β titanium alloys: a review, Mater. Sci. Technol. 25(3) (2009) 309-324.

Google Scholar

[31] A. Patnaik, N. Poondla, U. Bathini, T.S. Srivatsan, On the use of gas metal arc welding for manufacturing beams of commercially pure titanium and a titanium alloy, Mater. Manuf. Process. 26(2) (2011) 311-318.

DOI: 10.1080/10426914.2010.544806

Google Scholar

[32] V.I. Muravev, O.N. Kleshnina, A.A. Kuznetsov, P.V. Bakhmatov, Effect of the conditions of the welding thermal cycle on the structure and properties of weld metal in titanium alloys, Weld. Int. 26(1) (2012) 22-29.

DOI: 10.1080/09507116.2011.592708

Google Scholar

[33] Y. Wada, S. Inoue, H. Tsukamoto, T. Yamaguchi, K. Nishio, Numerical simulation of shielding gas behaviour in tungsten inert gas welding of titanium plate, Sci. Technol. Weld. Join. 17(2) (2012) 116-121.

DOI: 10.1179/1362171811y.0000000088

Google Scholar

[34] H.C. Dey, S.K. Albert, A.K. Bhaduri, U.K. Mudali, Activated flux TIG welding of titanium, Weld. World 57 (2013) 903-912.

DOI: 10.1007/s40194-013-0084-9

Google Scholar

[35] X.-L. Gao, L.-J. Zhang, J. Liu, J.-X. Zhang, Comparison of tensile damage evolution in Ti6Al4V joints between laser beam welding and gas tungsten arc welding, JMEPEG 23 (2014) 4316-4327.

DOI: 10.1007/s11665-014-1229-8

Google Scholar

[36] V.P. Prilutsky, S.V. Akhonin, TIG welding of titanium alloys using fluxes, Weld. World 58 (2014) 245-251.

DOI: 10.1007/s40194-013-0096-5

Google Scholar

[37] A. Karpagaraj, N. Sivashanmugam, K. Sankaranarayanasamy, Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets, Mater. Sci. Eng. 640 (2015) 180-189.

DOI: 10.1016/j.msea.2015.05.056

Google Scholar

[38] S.G. Lambrakos, A. Shabaev, L. Huang, Inverse thermal analysis of titanium GTA welds using multiple constraints, JMEPEG 24 (2015) 2401-2411.

DOI: 10.1007/s11665-015-1511-4

Google Scholar

[39] M. Baruah, S. Bag, Influence of heat input in microwelding of titanium alloy by microplasma arc, J. Mater. Process. Technol. 231 (2016) 100-112.

DOI: 10.1016/j.jmatprotec.2015.12.014

Google Scholar

[40] A.L. Anis, M.K. Talari, I.A.M. Arif, N.K. Babu, M.H. Ismail, G.D.J. Ram, Microstructure and mechanical properties of Ti-15-3 alloy gas tungsten arc welds prepared using CP-titanium filler, Trans. Indian Inst. Met. 70:3 (2017) 685-690.

DOI: 10.1007/s12666-017-1049-2

Google Scholar

[41] R.K. Gupta, V.A. Kumar, X.R. Xavier, Mechanical behavior of commercially pure titanium weldments at lower temperatures, JMEPEG 27 (2018) 2192-2204.

DOI: 10.1007/s11665-018-3307-9

Google Scholar

[42] M.A. Vasechkin, O.Y. Davydov, A.B. Kolomenskii, S.V. Egorov, Effect of welding and heat treatment regimes on the mechanical properties of various titanium alloy welded joints, Chem. Petrol. Eng. 54(7–8) (2018) 525-530.

DOI: 10.1007/s10556-018-0512-1

Google Scholar

[43] M.S. Slobodyan, Arc welding of zirconium and its alloys: a review, Progress in Nuclear Energy 133 (2021) 103630.

DOI: 10.1016/j.pnucene.2021.103630

Google Scholar

[44] ISO 9606-5:2000 Approval Testing of Welders – Fusion Welding – Part 5 – Titanium and Titanium Alloys, Zirconium and Zirconium Alloys.

DOI: 10.3403/01921224

Google Scholar

[45] ISO 15614-5:2004 Specification and Qualification of Welding Procedures for Metallic Materials – Welding Procedure Test – Part 5: Arc Welding of Titanium, Zirconium and Their Alloys.

DOI: 10.3403/03017636u

Google Scholar

[46] AWS D10.6/D10.6M:2000 Recommended Practices for Gas Tungsten Arc Welding of Titanium Piping and Tubing.

Google Scholar

[47] AWS G2.4/G2.4M:2007 Guide for the Fusion Welding of Titanium and Titanium Alloys.

Google Scholar

[48] D. Radaj, Heat Effects of Welding. Temperature Field, Residual Stress, Distortion, Springer-Verlag, Berlin, (1992).

Google Scholar

[49] E. Niemi (Ed.), Stress Determination for Fatigue Analysis of Welded Components, Abington Publishing, Cambridge, (1995).

Google Scholar

[50] Z. Feng (Ed.), Processes and Mechanisms of Welding Residual Stress and Distortion, Woodhead Publishing, Cambridge, (2005).

Google Scholar

[51] L. Pan, B.P. Athreya, J.A. Forck, W. Huang, L. Zhang, T. Hong, W. Li, W. Ulrich, J.C. Mach, Welding residual stress impact on fatigue life of a welded structure, Welding in the World 57 (2013) 685-691.

DOI: 10.1007/s40194-013-0067-x

Google Scholar

[52] S. Yoshida, Т. Sasaki, M. Usui, I.-K. Park, Analysis of near weld stress field based on strain measurement and physical mesomechanics. Physical Mesomechanics18:6 (2015) 32-44.

DOI: 10.1134/s1029959916010057

Google Scholar

[53] F. Yasmeen, M.A. Sutton, S. Rajan, H. Schreier, A. Campbell, Effect of surface normal variability on local surface strain measurements in StereoDIC, Optics and Lasers in Engineering 138 (2021) 106373.

DOI: 10.1016/j.optlaseng.2020.106373

Google Scholar

[54] A. Lattanzi, A. Piccininni, P. Guglielmi, M. Rossi, G. Palumbo, A fast methodology for the accurate characterization and simulation of laser heat treated blanks, International Journal of Mechanical Sciences 192 (2021) 106134.

DOI: 10.1016/j.ijmecsci.2020.106134

Google Scholar

[55] G.M. Hassan, Deformation measurement in the presence of discontinuities with digital image correlation: A review(2021) Optics and Lasers in Engineering, 137106394.

DOI: 10.1016/j.optlaseng.2020.106394

Google Scholar

[56] M.I. Latypov, J.-C. Stinville, J.R. Mayeur, J.M. Hestroffer, T.M. Pollock, I.J. Beyerlein, Insight into microstructure-sensitive elastic strain concentrations from integrated computational modeling and digital image correlation, Scripta Materialia 192 (2021) 78–82.

DOI: 10.1016/j.scriptamat.2020.10.001

Google Scholar

[57] M. Babaeeian, M. Mohammadimehr, Experimental and computational analyses on residual stress of composite plate using DIC and Hole-drilling methods based on Mohr's circle and considering the time effect, Optics and Lasers in Engineering 137 (2021) 106355.

DOI: 10.1016/j.optlaseng.2020.106355

Google Scholar

[58] C. Hartmann, H.A. Weiss, P. Lechner, W. Volk, S. Neumayer, J.H. Fitschen, G. Steidl, Measurement of strain, strain rate and crack evolution in shear cutting, Journal of Materials Processing Technology 288 (2021) 116872.

DOI: 10.1016/j.jmatprotec.2020.116872

Google Scholar

[59] T.E.J. Edwards, F. Di Gioacchino, W.J. Clegg, High resolution digital image correlation mapping of strain localization upon room and high temperature, high cycle fatigue of a TiAl intermetallic alloy, International Journal of Fatigue 142 (2021) 105905.

DOI: 10.1016/j.ijfatigue.2020.105905

Google Scholar

[60] W. Zhang, Y. Xie, L. Peng, H. Liao, Y. Wan, Fracture toughness determination from load-line displacement of 3-point bend specimen using 3D digital image correlation method for CLF-1 steel, Journal of Nuclear Materials 543 (2021) 152565.

DOI: 10.1016/j.jnucmat.2020.152565

Google Scholar

[61] M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Columbia, University of South Carolina, (2009).

DOI: 10.1007/978-0-387-78747-3

Google Scholar

[62] V.L. Romanova, R.P. Balakhonov, L.V. Panin, E.E. Batukhtina, M.S. Kazachenok, B.C. Shakhidzhanov, Micromechanical model of the evolution of the deformation relief in polycrystalline materials, Physical Mesomechanics 20(3) (2017) 81–90. (in Russian).

DOI: 10.1134/s1029959917030080

Google Scholar