[1]
E.W. Collings, The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, (1984).
Google Scholar
[2]
G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Metals Park, (1994).
Google Scholar
[3]
A.A. Ilin, B.A. Kolachev, and I.S. Pol'kin, Titanium Alloys: Composition, Structure, Properties, VILS-MATI, Moscow, 2009. (in Russian).
Google Scholar
[4]
D. Banerjee, J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(3) (2013) 844-879.
Google Scholar
[5]
F.H. Froes (Ed.), Titanium. Physical Metallurgy, Processing and Applications, ASM International, Materials Park, (2015).
Google Scholar
[6]
L.-C. Zhang and L.-Y. Chen, A review on biomedical titanium alloys: recent progress and prospect, Adv. Eng. Mater., 21(4) (2019) 1801215.
DOI: 10.1002/adem.201801215
Google Scholar
[7]
M.X. Shorshorov, G.V. Nazarov, Welding of Titanium and its Alloys, Mashgiz, Moscow, 1959. (in Russian).
Google Scholar
[8]
F.E. Tretyakov, Fusion Welding of Titanium and its Alloys, Mechanical Engineering, Moscow, 1968. (in Russian).
Google Scholar
[9]
V.N. Moiseev, F.R. Kulikov, Y.G. Kirillov, L.V. Shokholova, Y.V. Vaskin, Welded Joints of Titanium Alloys, Metallurgy, Moscow, 1979. (in Russian).
Google Scholar
[10]
W.A. Baeslack, D.W. Becker, F.H. Froes, Advances in titanium alloy welding metallurgy, J. Met. 5 (1984), pp.46-58.
DOI: 10.1007/bf03338455
Google Scholar
[11]
S.T. Eickhoff, T.W. Eagar, Characterization of spatter in low-current GMAW of titanium alloy plate, Weld. J. 10 (1990) 382-s–388-s.
Google Scholar
[12]
L. Hallum, W.A. Baeslack, Nature of grain refinement in titanium alloy welds by microcooler inoculation, Weld. J. 9 (1990) 326-s–336-s.
Google Scholar
[13]
T. Mohandas, G.M. Reddy, Effect of frequency of pulsing in gas tungsten arc welding on the microstructure and mechanical properties of titanium alloy welds, J. Mater. Sci. Lett. 15 (1996) 626-628.
DOI: 10.1007/bf00579271
Google Scholar
[14]
E.A. Skvortsov, Contraction of arc discharge in argon-arc welding of titanium alloys using halide fluxes, Weld. Int. 12 (1998) 979-982.
DOI: 10.1080/09507119809448546
Google Scholar
[15]
E. Szczok, An investigation of arc welding of thick titanium plate, Weld. Int. 12(8) (1998) 598-603.
DOI: 10.1080/09507119809452021
Google Scholar
[16]
E.A. Skvortsov, Effect of fluorides of alkali metals on processes in arc plasma when argon-arc welding titanium alloys, Weld. Int. 13(1) (1999) 77-80.
DOI: 10.1080/09507119909452060
Google Scholar
[17]
S. Sundaresan, G.D.J. Ram, Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α–β titanium alloys, Sci. Technol. Weld. Join. 4(3) (1999) 151-160.
DOI: 10.1179/136217199101537699
Google Scholar
[18]
Z. Yang, J.W. Elmer, J. Wong, T. Debroy, Evolution of titanium arc weldment macro and microstructures modeling and real time mapping of phases, Weld. J. 4 (2000) 97-s–112-s.
Google Scholar
[19]
S. Lathabai, B.L. Jarvis, K.J. Barton, Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium, Mater. Sci. Eng. 299(1–2) (2001) 81-93.
DOI: 10.1016/s0921-5093(00)01408-8
Google Scholar
[20]
Y.M. Zhang, P.J. Li, Modified active control of pulsed GMAW of metal transfer and titanium, Weld. J. 2 (2001) 54-s–61-s.
Google Scholar
[21]
B.C. Lyasotskaya, Heat Treatment of Welded Joints of Titanium Alloys, Ekomet, Moscow, 2003. (in Russian).
Google Scholar
[22]
S.H. Wang, M.D. Wei, Tensile properties of gas tungsten arc elements in commercially pure titanium, Ti–6Al–4V and Ti–15V–3Al–3Sn–3Cr alloys at different strain rates, Sci. Technol. Weld. Join. 9(5) (2004) 415-422.
DOI: 10.1179/136217104225021599
Google Scholar
[23]
K.-S. Bang, G. Chirieleison, S. Liu, Gas tungsten arc welding of titanium using flux cored wire with magnesium fluoride, Sci. Technol. Weld. Join. 10(5) (2005) 617-623.
DOI: 10.1179/174329305x57509
Google Scholar
[24]
L. Liu, X. Du, M. Zhu, G. Chen, Research on the microstructure and properties of weld repairs in TA15 titanium alloy, Mater. Sci. Eng. 445(6) (2007) 691-696.
DOI: 10.1016/j.msea.2006.10.001
Google Scholar
[25]
J. Luck, J. Fulcer, Titanium welding 101: best GTA practices, Weld. J. 86(12) (2007) 26-31.
Google Scholar
[26]
T. Otani, Titanium welding technology, Nippon Steel Tech. Rep. 95 (2007) 88-92.
Google Scholar
[27]
R. Sutherlin, The welding of titanium and its alloys, Weld. J. 86 (12) (2007) 40-45.
Google Scholar
[28]
V. Balasubramanian, V. Jayabalan, M. Balasubramanian, Effect of current pulsing on tensile properties of titanium alloy, Mater. Des. 29 (2008), 1459-1466.
DOI: 10.1016/j.matdes.2007.07.007
Google Scholar
[29]
A.R. Shankar, G. Gopalakrishnan, V. Balusamy, U.K. Mudali, Effect of heat input on microstructural changes and corrosion behavior of commercially pure titanium welds in nitric acid medium, JMEPEG 18 (2009) 1116-1123.
DOI: 10.1007/s11665-008-9335-0
Google Scholar
[30]
A.B. Short, Gas tungsten arc welding of α+β titanium alloys: a review, Mater. Sci. Technol. 25(3) (2009) 309-324.
Google Scholar
[31]
A. Patnaik, N. Poondla, U. Bathini, T.S. Srivatsan, On the use of gas metal arc welding for manufacturing beams of commercially pure titanium and a titanium alloy, Mater. Manuf. Process. 26(2) (2011) 311-318.
DOI: 10.1080/10426914.2010.544806
Google Scholar
[32]
V.I. Muravev, O.N. Kleshnina, A.A. Kuznetsov, P.V. Bakhmatov, Effect of the conditions of the welding thermal cycle on the structure and properties of weld metal in titanium alloys, Weld. Int. 26(1) (2012) 22-29.
DOI: 10.1080/09507116.2011.592708
Google Scholar
[33]
Y. Wada, S. Inoue, H. Tsukamoto, T. Yamaguchi, K. Nishio, Numerical simulation of shielding gas behaviour in tungsten inert gas welding of titanium plate, Sci. Technol. Weld. Join. 17(2) (2012) 116-121.
DOI: 10.1179/1362171811y.0000000088
Google Scholar
[34]
H.C. Dey, S.K. Albert, A.K. Bhaduri, U.K. Mudali, Activated flux TIG welding of titanium, Weld. World 57 (2013) 903-912.
DOI: 10.1007/s40194-013-0084-9
Google Scholar
[35]
X.-L. Gao, L.-J. Zhang, J. Liu, J.-X. Zhang, Comparison of tensile damage evolution in Ti6Al4V joints between laser beam welding and gas tungsten arc welding, JMEPEG 23 (2014) 4316-4327.
DOI: 10.1007/s11665-014-1229-8
Google Scholar
[36]
V.P. Prilutsky, S.V. Akhonin, TIG welding of titanium alloys using fluxes, Weld. World 58 (2014) 245-251.
DOI: 10.1007/s40194-013-0096-5
Google Scholar
[37]
A. Karpagaraj, N. Sivashanmugam, K. Sankaranarayanasamy, Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets, Mater. Sci. Eng. 640 (2015) 180-189.
DOI: 10.1016/j.msea.2015.05.056
Google Scholar
[38]
S.G. Lambrakos, A. Shabaev, L. Huang, Inverse thermal analysis of titanium GTA welds using multiple constraints, JMEPEG 24 (2015) 2401-2411.
DOI: 10.1007/s11665-015-1511-4
Google Scholar
[39]
M. Baruah, S. Bag, Influence of heat input in microwelding of titanium alloy by microplasma arc, J. Mater. Process. Technol. 231 (2016) 100-112.
DOI: 10.1016/j.jmatprotec.2015.12.014
Google Scholar
[40]
A.L. Anis, M.K. Talari, I.A.M. Arif, N.K. Babu, M.H. Ismail, G.D.J. Ram, Microstructure and mechanical properties of Ti-15-3 alloy gas tungsten arc welds prepared using CP-titanium filler, Trans. Indian Inst. Met. 70:3 (2017) 685-690.
DOI: 10.1007/s12666-017-1049-2
Google Scholar
[41]
R.K. Gupta, V.A. Kumar, X.R. Xavier, Mechanical behavior of commercially pure titanium weldments at lower temperatures, JMEPEG 27 (2018) 2192-2204.
DOI: 10.1007/s11665-018-3307-9
Google Scholar
[42]
M.A. Vasechkin, O.Y. Davydov, A.B. Kolomenskii, S.V. Egorov, Effect of welding and heat treatment regimes on the mechanical properties of various titanium alloy welded joints, Chem. Petrol. Eng. 54(7–8) (2018) 525-530.
DOI: 10.1007/s10556-018-0512-1
Google Scholar
[43]
M.S. Slobodyan, Arc welding of zirconium and its alloys: a review, Progress in Nuclear Energy 133 (2021) 103630.
DOI: 10.1016/j.pnucene.2021.103630
Google Scholar
[44]
ISO 9606-5:2000 Approval Testing of Welders – Fusion Welding – Part 5 – Titanium and Titanium Alloys, Zirconium and Zirconium Alloys.
DOI: 10.3403/01921224
Google Scholar
[45]
ISO 15614-5:2004 Specification and Qualification of Welding Procedures for Metallic Materials – Welding Procedure Test – Part 5: Arc Welding of Titanium, Zirconium and Their Alloys.
DOI: 10.3403/03017636u
Google Scholar
[46]
AWS D10.6/D10.6M:2000 Recommended Practices for Gas Tungsten Arc Welding of Titanium Piping and Tubing.
Google Scholar
[47]
AWS G2.4/G2.4M:2007 Guide for the Fusion Welding of Titanium and Titanium Alloys.
Google Scholar
[48]
D. Radaj, Heat Effects of Welding. Temperature Field, Residual Stress, Distortion, Springer-Verlag, Berlin, (1992).
Google Scholar
[49]
E. Niemi (Ed.), Stress Determination for Fatigue Analysis of Welded Components, Abington Publishing, Cambridge, (1995).
Google Scholar
[50]
Z. Feng (Ed.), Processes and Mechanisms of Welding Residual Stress and Distortion, Woodhead Publishing, Cambridge, (2005).
Google Scholar
[51]
L. Pan, B.P. Athreya, J.A. Forck, W. Huang, L. Zhang, T. Hong, W. Li, W. Ulrich, J.C. Mach, Welding residual stress impact on fatigue life of a welded structure, Welding in the World 57 (2013) 685-691.
DOI: 10.1007/s40194-013-0067-x
Google Scholar
[52]
S. Yoshida, Т. Sasaki, M. Usui, I.-K. Park, Analysis of near weld stress field based on strain measurement and physical mesomechanics. Physical Mesomechanics18:6 (2015) 32-44.
DOI: 10.1134/s1029959916010057
Google Scholar
[53]
F. Yasmeen, M.A. Sutton, S. Rajan, H. Schreier, A. Campbell, Effect of surface normal variability on local surface strain measurements in StereoDIC, Optics and Lasers in Engineering 138 (2021) 106373.
DOI: 10.1016/j.optlaseng.2020.106373
Google Scholar
[54]
A. Lattanzi, A. Piccininni, P. Guglielmi, M. Rossi, G. Palumbo, A fast methodology for the accurate characterization and simulation of laser heat treated blanks, International Journal of Mechanical Sciences 192 (2021) 106134.
DOI: 10.1016/j.ijmecsci.2020.106134
Google Scholar
[55]
G.M. Hassan, Deformation measurement in the presence of discontinuities with digital image correlation: A review(2021) Optics and Lasers in Engineering, 137106394.
DOI: 10.1016/j.optlaseng.2020.106394
Google Scholar
[56]
M.I. Latypov, J.-C. Stinville, J.R. Mayeur, J.M. Hestroffer, T.M. Pollock, I.J. Beyerlein, Insight into microstructure-sensitive elastic strain concentrations from integrated computational modeling and digital image correlation, Scripta Materialia 192 (2021) 78–82.
DOI: 10.1016/j.scriptamat.2020.10.001
Google Scholar
[57]
M. Babaeeian, M. Mohammadimehr, Experimental and computational analyses on residual stress of composite plate using DIC and Hole-drilling methods based on Mohr's circle and considering the time effect, Optics and Lasers in Engineering 137 (2021) 106355.
DOI: 10.1016/j.optlaseng.2020.106355
Google Scholar
[58]
C. Hartmann, H.A. Weiss, P. Lechner, W. Volk, S. Neumayer, J.H. Fitschen, G. Steidl, Measurement of strain, strain rate and crack evolution in shear cutting, Journal of Materials Processing Technology 288 (2021) 116872.
DOI: 10.1016/j.jmatprotec.2020.116872
Google Scholar
[59]
T.E.J. Edwards, F. Di Gioacchino, W.J. Clegg, High resolution digital image correlation mapping of strain localization upon room and high temperature, high cycle fatigue of a TiAl intermetallic alloy, International Journal of Fatigue 142 (2021) 105905.
DOI: 10.1016/j.ijfatigue.2020.105905
Google Scholar
[60]
W. Zhang, Y. Xie, L. Peng, H. Liao, Y. Wan, Fracture toughness determination from load-line displacement of 3-point bend specimen using 3D digital image correlation method for CLF-1 steel, Journal of Nuclear Materials 543 (2021) 152565.
DOI: 10.1016/j.jnucmat.2020.152565
Google Scholar
[61]
M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Columbia, University of South Carolina, (2009).
DOI: 10.1007/978-0-387-78747-3
Google Scholar
[62]
V.L. Romanova, R.P. Balakhonov, L.V. Panin, E.E. Batukhtina, M.S. Kazachenok, B.C. Shakhidzhanov, Micromechanical model of the evolution of the deformation relief in polycrystalline materials, Physical Mesomechanics 20(3) (2017) 81–90. (in Russian).
DOI: 10.1134/s1029959917030080
Google Scholar