Investigation of the Effect of Thermal Limiters on the Change in the Structure Formation of Deposited Multilayer Specimens from Steel AISI 308LSi

Article Preview

Abstract:

The work investigated the effect of thermal limiters on the distribution of heat in the product and the formation of the structure of multilayer samples made of stainless steel AISI 308LSi deposited by electric arc welding in argon. It was found that as a result of the formation of products using thermal limiters, the high temperature regions deepen towards the substrate. It was revealed that the greatest effect of thermal limiters is observed in the central parts of the products. An increase in the fraction of γ-Fe is observed, which is confirmed by the dissolution of the dendritic axes of δ-Fe, in the sample obtained using thermal limiters. The obtained results confirm the prospects for producing multilayer products with increased mechanical properties by the method of electric arc welding using thermal limiters.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 328)

Pages:

115-122

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wohlers T., Wohlers report 2014: Additive manufacturing and 3D-printing state of the industry: Annual worldwide progress report, Wohlers Associates, 276 p.

DOI: 10.1089/3dp.2013.0004

Google Scholar

[2] ASTM F2792-12a Standard terminology for additive manufacturing technologies.

Google Scholar

[3] Kuznetsov M.A., Danilov V.I., Krampit M.A., Chinakhov D.A., Slobodyan M.S. Mechanical and tribological properties of a metal wall grown by an electric arc method in an atmosphere of shielding gas. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, p.18–32.

DOI: 10.17212/1994-6309-2020-22.3-18-32

Google Scholar

[4] X. Yan, P. Gu, A review of rapid prototyping technologies and systems, Comput. Aided Des. 28 (4) (1996) 307–318, https://doi.org/10.1016/0010-4485(95) 00035-6.

DOI: 10.1016/0010-4485(95)00035-6

Google Scholar

[5] Gisario A., Kazarian M., Martina F., Mehrpouya M. Metal additive manufacturing in the commercial aviation industry: a review. Journal of Manufacturing Systems, 2019, vol. 53, p.124–149.

DOI: 10.1016/j.jmsy.2019.08.005

Google Scholar

[6] DIN EN ISO/ASTM 52900:2018–06, Additive Manufacturing; Deutsche und Englische Fassung prEN_ISO/ASTM 52900:(2018).

DOI: 10.31030/2842544

Google Scholar

[7] Murr L.E., Gaytan S.M., Ramirez D.A., Martine, E., Hernandez J., Amato K.N., Shindo P.W., Medina F.R., Wicker R.B. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science and Technology, 2012, vol. 28, iss. 1, p.1–14.

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[8] Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 2012, vol. 57, iss. 3, p.133–164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[9] Sing S.L., An J., Yeong W.Y., Wiria F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 2016, vol. 34, iss. 3, p.369–385.

DOI: 10.1002/jor.23075

Google Scholar

[10] Queguineur A., Rückert G., Cortial F., Hascoët J.Y. Evaluation of wire arc additive manufacturing for large-sized components in naval applications. Welding in the World, 2018, vol. 62, iss. 2, p.259–266.

DOI: 10.1007/s40194-017-0536-8

Google Scholar

[11] Rodriguez N., Vázquez L., Huarte I., Arruti E., Tabernero I., Alvarez P. Wire and arc additive manufacturing: a comparison between CMT and Top TIG processes applied to stainless steel. Welding in the World, 2018, vol. 62, p.1083–1096.

DOI: 10.1007/s40194-018-0606-6

Google Scholar

[12] Chinakhov D.A., Akimov K.O., Dubrovskiy A.S., Ilyaschenko D.P. Influence of Thermal Limiters on the Formation of the Dendritic Structure of the Welded Stainless Steel Layer. Journal of Physics: Conference Series 1945 (2021) 012038.

DOI: 10.1088/1742-6596/1945/1/012038

Google Scholar

[13] Bekker A. C. M., Verlinden J. C. Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. Journal of Cleaner Production, 2018, vol. 177, p.438–447.

DOI: 10.1016/j.jclepro.2017.12.148

Google Scholar

[14] Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., et al. Fabrication of metal and alloy components by additive manufacturing: examples of 3d materials science. J Mater Res Technol 2012; 1:42–54. https://doi.org/10.1016/s2238-7854(12)70009-1.

DOI: 10.1016/s2238-7854(12)70009-1

Google Scholar

[15] James W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processingscience of metal additive manufacturing. Int Mater Rev 2016; 61:315–60. https://doi.org/10.1080/09506608.2015.1116649.

Google Scholar

[16] Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S., Peltz M.A. Characterization of metal powders used for additive manufacturing. J Res Natl InstStand Technol 2014; 119:460. https://doi.org/10.6028/jres.119.018.

DOI: 10.6028/jres.119.018

Google Scholar

[17] Strondl A., Lyckfeldt O., Brodin H., Ackelid U. Characterization and control of powder properties for additive manufacturing. JOM 2015; 67:549–54. https://doi.org/10.1007/s11837-015-1304-0.

DOI: 10.1007/s11837-015-1304-0

Google Scholar

[18] Steel symbol/number: X2CrNi21–10/1.4331 [electronic resource]. Access mode: www.url: https://materials.springer.com/lb/docs/sm_lbs_978-3-540-44760-3_97. 09.07.(2021).

Google Scholar

[19] Metallurgie und Werkstofftechnik: e. Wissensspeicher. 2 Bände R. Zimmermann, K. Günther. (1977).

Google Scholar

[20] E.G. Astafurova, M.Y. Panchenko, V.A. Moskvina, G.G. Maier, S.V. Astafurov, E. V. Melnikov, A.S. Fortuna, K.A. Reunova, V.E. Rubtsov, E.A. Kolubaev, Microstructure and grain growth inhomogeneity in austenitic steel produced by wire-feed electron beam melting: the effect of post-building solid-solution treatment, J. Mater. Sci. 55 (2020) 9211–9224, https://doi.org/10.1007/s10853-020-04424-w.

DOI: 10.1007/s10853-020-04424-w

Google Scholar