Modeling the Influence of Mechanical Control Impacts on the Distribution of the Temperature Field in the Base Metal during Surfacing with a Strip Electrode

Article Preview

Abstract:

Modeling of the temperature distribution during electric arc surfacing with a strip electrode is carried out in relation to the design scheme of a semi-infinite body. Also, in the work, the temperature distribution was calculated when a flat layer was heated by a linear source, which made it possible to compare the temperature distribution data without and taking into account the heat release conditions at the product boundaries. The simulation results showed that the control of heat input into the base metal when using mechanical control actions makes it possible to reduce the overheating of the weld pool, reduce the area of the melting isotherm, and reduce the cooling rate of the heat-affected zone. By calculation, the previously determined optimal range of values of the frequency of control actions of 40÷60 Hz was confirmed, which makes it possible to ensure the minimum depth of penetration of the base metal and obtain a favorable structure in the heat-affected zone, prone to the formation of a coarse-grained structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 328)

Pages:

107-114

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Praveen, P., Yarlagadda, P.K. & Kang, M.J. (2005) Advancements in pulse gas metal arc welding, Journal of Materials Processing Technology, 164/165, 1113-1119.

DOI: 10.1016/j.jmatprotec.2005.02.100

Google Scholar

[2] Song, Y. Yan, S., Xiao, T. (2010) A study on the macro-micro physical properties in pulsed arc plasma, Transactions of JWRI, 2, 17–18.

Google Scholar

[3] Ravi Vishnu, P., Li, W., & Easterling, K. E. (1991) Heat flow model for pulsed welding, Materials Science and Technology, 7, 649–659.

DOI: 10.1179/mst.1991.7.7.649

Google Scholar

[4] Karkhin, V.A., Khomich, P.N., Ossenbrink, R., Mikhailov, V.G. (2007) Calculation-experimental method for the determination of the temperature field in laser welding, Welding International, 21 (5), 387–390. doi: https://doi.org/10.1080/09507110701455574.

DOI: 10.1080/09507110701455574

Google Scholar

[5] Karkhin, V.A. (2019). Thermal Processes in Welding. Springer, 492. doi: https://doi.org/ 10.1007/978-981-13-5965-1.

Google Scholar

[6] Karhin V.A., Fedotov B.V., Babkin I.N., Subramaniam S. (2004) Raspredelenie temperatury i padenija naprjazhenija v vylete plavjashhegosja jelektroda pri svarke postojannym i pul'sirujushhim tokom, Svarochnoe proizvodstvo, 8, 10-20.

Google Scholar

[7] Saraev, Yu. N., Krektuleva, R. A., & Kosyakov, V. A. (1997) Mathematical modelling technological processes of pulsed argon TIG welding, Welding International, 11(10), 807–809.

DOI: 10.1080/09507119709454429

Google Scholar

[8] Tong, Z., Zhentai, Z., Rui, Z. (2013) A dynamic welding heat source model in pulsed current gas tungsten arc welding, Journal of Materials Processing Technology, 213, 2329-2338.

DOI: 10.1016/j.jmatprotec.2013.07.007

Google Scholar

[9] Dragan, S.V., Yaros, Y.O., Simutienkov, I.V., Trembich, V.Y. (2015) Influence of high-frequency electrode vibrations on the geometry of penetration at automatic submerged arc cladding, Shipbuilding and Marine Infrastructure, 1, 76–86. http://smi.nuos.mk.ua/ archive /2015/1/19.pdf.

DOI: 10.15589/smi20150101

Google Scholar

[10] Lebedev, V.A. Pichak, V.G., Smoljarko, V.B. (2001) Mehanizmy impul'snoj podachi provoloki s regulirovaniem parametrov impul'sov, Avtomaticheskaja svarka, 5, 31–37.

Google Scholar

[11] Pulka, Ch.V., Shably, O.N., Senchishin, V.S., Sharyk, M.V. & Gordan, G.N. (2012) Influence of vibration of parts on structure and properties of metal in surfacing, The Paton Welding Journal, 1, 23-25.

Google Scholar

[12] Goloborod'ko A.Zh., Dragan S.V., Simutenkov I.V. (2013) Avtomaticheskaja naplavka pod fljusom konstrukcionnyh stalej s poperechnymi vysokochastotnymi peremeshhenijam, Avtomaticheskaja svarka, 6, 35-38.

Google Scholar

[13] Karunakaran, N. (2013) Effect of Pulsed Current on Temperature Distribution and Characteristics of GTA Welded Magnesium Alloy, IOSR-JMCE, 4(6), 01-08.

DOI: 10.9790/1684-0460108

Google Scholar

[14] Lebedev V.A., Solomichuk T.G., Novykov S.V. (2019) Study of a Welding Harmonic Oscillation influence on the Welded Metal Hardness and Weld Bead Width, Journal of Еngineering Sciences, 6, 16–21.

Google Scholar

[15] Ivanov, V., Lavrova, E., Burlaka, V. & Duhanets, V. (2019) Calculation of the penetration zone geometric parameters at surfacing with a strip electrode, Eastern-European Journal of Enterprise Technologies, 6/5(102), 57-62.

DOI: 10.15587/1729-4061.2019.187718

Google Scholar

[16] Ivanov, V., Lavrova, E., Morgay, F. & Semkiv, O. (2021) Investigation of the heat-affected zone properties during cladding of power equipment with austenitic materials using control mechanical impacts on the strip electrode, Materials Science Forum, 1038, 100-107. https://doi.org/10.4028/www.scientific.net/MSF.1038.100.

DOI: 10.4028/www.scientific.net/msf.1038.100

Google Scholar

[17] Ivanov, V., Lavrova, E., Kibish, V., & Mamontov, I. (2021) Research of the microstructure of the deposited layer during electric arc surfacing with control impacts, Materials Science Forum, 1038, 85-92. https://doi.org/10.4028/www.scientific.net/MSF.1038.85.

DOI: 10.4028/www.scientific.net/msf.1038.85

Google Scholar

[18] Serenko, A. N., Shaferovsky, V. A., & Pivtorak, N. I. (1993). Temperature fields in two-arc welding with programmed conditions, Welding International, 7(10), 802–804.

DOI: 10.1080/09507119309548495

Google Scholar

[19] Belousov, Yu. V., Leshchinsky, L. K., & Sologub, B. B. (1976). Selection of optimum shape of strip electrode for wide-layer deposit, Automatic Welding, (12), 24–28.

Google Scholar

[20] Matvienko, V., Mazur, V., Leshchinsky, L. (2015). Evaluation of shape and sizes of weld pool in surfacing using combined strip electrode, The Paton Welding Journal, 9, 28 – 31.

DOI: 10.15407/tpwj2015.09.04

Google Scholar