[1]
Li X, Zhang M, Yuan S, et al. Research Progress of Silicon/Carbon Anode Materials for Lithium‐Ion Batteries: Structure Design and Synthesis Method[J]. ChemElectroChem, 2020, 7(21): 4289-4302.
DOI: 10.1002/celc.202001060
Google Scholar
[2]
Wang X, Huang R Q, Niu S Z, et al. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Materials, 2021, 36(4): 711-728.
DOI: 10.1016/s1872-5805(21)60081-1
Google Scholar
[3]
Piffet C, Vertruyen B, Caes S, et al. Aqueous processing of flexible, free-standing Li4Ti5O12 electrodes for Li-ion batteries[J]. Chemical Engineering Journal, 2020, 397: 125508.
DOI: 10.1016/j.cej.2020.125508
Google Scholar
[4]
Wang Y L, Liu B X, Tian G F, et al. Research progress of cathode binder for high performance lithium-ion battery[J]. Acta Polym Sin, 2020, 51: 326-337.
Google Scholar
[5]
Kim T, Song W, Son D Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964.
DOI: 10.1039/c8ta10513h
Google Scholar
[6]
Parai R, Walters T, Marin J, et al. Strength enhancement in ice-templated lithium titanate Li4Ti5O12 materials using sucrose[J]. Materialia, 2020, 14: 100901.
DOI: 10.1016/j.mtla.2020.100901
Google Scholar
[7]
Ma G, Cheng M. Preparation of Li4Ti5O12/C composite by one-step solid state method[J]. Ferroelectrics, 2019, 548(1): 34-41.
Google Scholar
[8]
Ren S, Liu J, Wang D, et al. Dielectric relaxation behavior induced by lithium migration in Li4Ti5O12 spinel[J]. Journal of Alloys and Compounds, 2019, 793: 678-685.
DOI: 10.1016/j.jallcom.2019.04.216
Google Scholar
[9]
Thackeray M M, Amine K. Li4Ti5O12 spinel anodes[J]. Nature Energy, 2021, 6(6): 683-683.
DOI: 10.1038/s41560-021-00829-2
Google Scholar
[10]
Liu J, Zhong S, Chen Q, et al. Spherical Li4Ti5O12/NiO composite with enhanced capacity and rate performance as anode material for lithium-ion batteries[J]. Frontiers in Chemistry, 2020, 8: 1189.
DOI: 10.3389/fchem.2020.626388
Google Scholar
[11]
Zheng L, Wang X, Xia Y, et al. Scalable in situ synthesis of Li4Ti5O12/carbon nanohybrid with supersmall Li4Ti5O12 nanoparticles homogeneously embedded in carbon matrix[J]. ACS applied materials & interfaces, 2018, 10(3): 2591-2602.
DOI: 10.1021/acsami.7b16578.s001
Google Scholar
[12]
Ding M, Liu H, Zhu J, et al. Constructing of hierarchical yolk-shell structure Li4Ti5O12-SnO2 composites for high rate lithium ion batteries[J]. Applied Surface Science, 2018, 448: 389-399.
DOI: 10.1016/j.apsusc.2018.04.140
Google Scholar
[13]
Lang X, Liu Y, Cai K, et al. Spherical Li4Ti5O12/S composite material as positive active material for high electrochemical performance lithium‐ion battery[J]. Energy Technology, 2018, 6(10): 1894-1898.
DOI: 10.1002/ente.201700982
Google Scholar
[14]
Bai X, Zhang B, Jiang G Z, et al. Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate[J]. Electrochimica Acta, 2019, 295: 891-899.
DOI: 10.1016/j.electacta.2018.11.100
Google Scholar
[15]
Liu Y, Zhao M, Xu H, et al. Fabrication of continuous conductive network for Li4Ti5O12 anode by Cu-doping and graphene wrapping to boost lithium storage[J]. Journal of Alloys and Compounds, 2019, 780: 1-7.
DOI: 10.1016/j.jallcom.2018.11.355
Google Scholar
[16]
Ren B, Li W, Wei A, et al. Boron and nitrogen co-doped CNT/Li4Ti5O12 composite for the improved high-rate electrochemical performance of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 740: 784-789.
DOI: 10.1016/j.jallcom.2017.12.167
Google Scholar
[17]
Gangaja B, Nair S, Santhanagopalan D. Surface-engineered Li4Ti5O12 nanoparticles by TiO2 coating for superior rate capability and electrochemical stability at elevated temperature[J]. Applied Surface Science, 2019, 480: 817-821.
DOI: 10.1016/j.apsusc.2019.03.061
Google Scholar
[18]
Hou L, Qin X, Gao X, et al. Zr-doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 774: 38-45.
DOI: 10.1016/j.jallcom.2018.09.364
Google Scholar
[19]
Pu Z, Lan Q, Li Y, et al. Preparation of W-doped hierarchical porous Li4Ti5O12/brookite nanocomposites for high rate lithium ion batteries at− 20° C[J]. Journal of Power Sources, 2019, 437: 226890.
DOI: 10.1016/j.jpowsour.2019.226890
Google Scholar
[20]
Meng W W, Yan B L, Xu Y J. Scalable synthesis of Ti3+ self-doped Li4Ti5O12 microparticles as an improved performance anode material for Li-ion batteries[J]. Journal of Alloys and Compounds, 2019, 788: 21-29.
DOI: 10.1016/j.jallcom.2019.01.362
Google Scholar
[21]
Wang J, Zhao S, Xie J, et al. Enhanced high-rate performance of Br-doping Li4Ti5O12 microspheres as anode materials for lithium-ion batteries[J]. Journal of Solid State Chemistry, 2021, 303: 122479.
DOI: 10.1016/j.jssc.2021.122479
Google Scholar
[22]
Bhatti H S, Jabeen S, Mumtaz A, et al. Effects of cobalt doping on structural, optical, electrical and electrochemical properties of Li4Ti5O12 anode[J]. Journal of Alloys and Compounds, 2022, 890: 161691.
DOI: 10.1016/j.jallcom.2021.161691
Google Scholar
[23]
Michalska M, Lemański K, Ptak M, et al. Effects of Eu3+ ions doping on physicochemical properties of spinel-structured lithium-titanium oxide (Li4Ti5O12) as an efficient photoluminescent material[J]. Materials Research Bulletin, 2021, 134: 111084.
DOI: 10.1016/j.materresbull.2020.111084
Google Scholar
[24]
Liang K, Huang X, Hong X, et al. Sulfur and nitrogen-doped Li4Ti5O12/rGO as an anode material for advanced sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 857: 158190.
DOI: 10.1016/j.jallcom.2020.158190
Google Scholar