[1]
K.Tian,M.Prestgard,A.Tiwari. A review of recent advances in nonenzymatic glucose sensors. Materials Science & Engineering C.41(2014)100-118.
DOI: 10.1016/j.msec.2014.04.013
Google Scholar
[2]
D.Xu,C.L. Zhu,X.Meng Z.X. Chen,Y.Li,D.Zhang S.M. Zhu. Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose. Sensors & Actuators: B. Chemical.265(2018)435-442.,2018,265.
DOI: 10.1016/j.snb.2018.03.086
Google Scholar
[3]
P.K. Bairagi,N.Verma. Electro-polymerized polyacrylamide nano film grown on a Ni-reduced graphene oxide- polymer composite: A highly selective non-enzymatic electrochemical recognition element for glucose. Sensors & Actuators: B. Chemical.289(2019)216-225.
DOI: 10.1016/j.snb.2019.03.057
Google Scholar
[4]
Z.D. Ren,H.CH. Mao H.W. Luo Y.A. Liu. Glucose sensor based on porous Ni by using a graphene bottom layer combined with a Ni middle layer. Carbon.149(2019)609-617.
DOI: 10.1016/j.carbon.2019.04.073
Google Scholar
[5]
K.Tian,M.Prestgard,A.Tiwari. A review of recent advances in nonenzymatic glucose sensors. Materials Science & Engineering C.41(2014)100-118.
DOI: 10.1016/j.msec.2014.04.013
Google Scholar
[6]
M. Dong, H.L Hu, S.J. Ding, C.C. Wang, L. Li. A facile synthesis of CoMn2O4 nanosheets on reduced grapheme oxide for non-enzymatic glucose sensing. Nanotechnology. 32 (2021) 055501.
DOI: 10.1088/1361-6528/abc112
Google Scholar
[7]
J. Yu, Y.H. Ni, M.H. Zhai. Highly selective non-enzyme glucose detection based on Co-CoO-Co3O4 nanocomposites prepared via a solution-combustion and subsequent heat-treating route. Journal of Alloys and Compounds. 723(2017) 904-911.
DOI: 10.1016/j.jallcom.2017.06.322
Google Scholar
[8]
L. Liu, Z. Wang, J. Yang, G. Liu, J. Li, L. Guo, et al. NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sensors and Actuators B: Chemical. 258(2018) 920-8.
DOI: 10.1016/j.snb.2017.11.118
Google Scholar
[9]
M. Dong, H.L Hu, Sh.J Ding, Ch.Ch Wang, L.Li. Flexible non-enzymatic glucose biosensor based on CoNi2S4 nanosheets grown on Nitrogen-doped Carbon Foam substrate. Journal of Alloys and Compounds, 883(2021)160830.
DOI: 10.1016/j.jallcom.2021.160830
Google Scholar
[10]
L. Wen, L.L. Han, C.J. Xuan, R.Q. Lin, H.F. Liu, D.L. Wang. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high performance electrode materials for supercapacitors and Li-ion batteries. Electrochimica Acta. 210(2016) 130-137.
DOI: 10.1016/j.electacta.2016.05.158
Google Scholar
[11]
Y.S. Zou, L.L. He, K. Dou, Sh.L. Wang, P.L. Ke, A.Y. Wang. Amperometric glucose sensor based on boron doped microcrystalline diamond film electrode with different boron doping levels. RSC Adv. 4(2014)58349-58356.
DOI: 10.1039/c4ra10266e
Google Scholar
[12]
S.P. Rajeev, S.C. Karumuthil, L.B. Prakash, S. Varghese. Flexible nanoenergy harvester using piezo-tribo functional polymer and carbon fibre as electrodes. Materials Research Express. 5(2018) 075509.
DOI: 10.1088/2053-1591/aad069
Google Scholar
[13]
M. Dong, H. L Hu, Sh. J Ding, Ch.Ch Wang. High-performance non-enzymatic glucose sensing electrode fabricated by α-Nickel Hydroxide-Reduced Graphene Oxide nanocomposite on Nickel Foam substrate. Materials in electronics, 32(2021)19327–19338.
DOI: 10.1007/s10854-021-06451-y
Google Scholar
[14]
Sh.F. Jia, Y.T. Liang, D.L. Liang, S.J Chu, Y. Liang. A Novel High Speed Permanent Magnet Machine with Dual Semi-Cage Winding. 2020 International Conference on Electrical Machines (ICEM). (2020).
DOI: 10.1109/icem49940.2020.9270912
Google Scholar
[15]
X.J. Liu, W.X Yang, L.L. Chen, J.B. Jia. Synthesis of copper nanorods for nonenzymatic amperometric sensing of glucose. Microchimica Acta. 183(2016)2369–2375.
DOI: 10.1007/s00604-016-1878-4
Google Scholar
[16]
Y.Q. Kuai, M.T. Liu, T.L. Wang, Y. Fu, H.W. Ma, Q. Jiang, Ch. Guan, K.R. Hu. Sea anemone-like zinc-cobalt oxysulfides grown on Ni foam as a battery-type electrode with admirable performance. Ionics. 23(2017)1391-1398.
DOI: 10.1007/s11581-017-1981-5
Google Scholar
[17]
W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications, ACS applied materials & interfaces, 6 (2014) 19318-19326.
DOI: 10.1021/am5053784
Google Scholar
[18]
T.H. Ko, S. Radhakrishnan, M.-K. Seo, M.-S. Khil, H.-Y. Kim, B.-S. Kim, A green and scalable dry synthesis of NiCo2O4/graphene nanohybrids for high-performance supercapacitor and enzymeless glucose biosensor applications, Journal of Alloys and Compounds, 696 (2017) 193-200.
DOI: 10.1016/j.jallcom.2016.11.234
Google Scholar
[19]
M. Dong, H.L Hu, Sh.J Ding, Ch.Ch Wang, L.Li. Flexible non-enzymatic glucose biosensor based on CoNi2S4 nanosheets grown on Nitrogen-doped Carbon Foam substrate. Journal of Alloys and Compounds, 883(2021)160830.
DOI: 10.1016/j.jallcom.2021.160830
Google Scholar
[20]
J. He, X. Lu, J. Yu, et al. Hierarchical Co(OH)2 Nanostructures/glassy Carbon Electrode Derived from Co(BTC) Metal-organic Frameworks for Glucose Sensing. J Nanopart Res. 2016; 18:184.
DOI: 10.1007/s11051-016-3489-8
Google Scholar
[21]
L. Zhang, C. Yang, G. Zhao, et al. Self-supported Porous CoOOH Nanosheet Arrays as a Non-enzymatic Glucose Sensor with good Reproducibility. Sensors and Actuators B 2015; 210:190-196.
DOI: 10.1016/j.snb.2014.12.113
Google Scholar
[22]
D. Sahar, G. Shahram, A.A Ali. Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor. Journal of colloid and interface science. 2019; 550:180-189.
DOI: 10.1016/j.jcis.2019.04.091
Google Scholar
[23]
L. Zhang, Y.R. Ding, R.R. Li, et al. Ni-Based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucosesensor. Journal of Materials Chemistry B.2017; 5:5549-5555.
DOI: 10.1039/c7tb01363a
Google Scholar
[24]
B.B. Zhan, C.B. Liu, H.P. Chen, et al. Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nanoscale. 2014; 6:7424-7429.
DOI: 10.1039/c4nr01611d
Google Scholar
[25]
K.D. Xia, C. Yang, Y.L. Chen, et al. In situ fabricationof Ni(OH)2 flakes on Ni foam through electrochemical corrosion as high sensitive andstable binder-free electrode for glucose sensing. Sensors & Actuators: B. Chemical. 2017; 240:979-987.
DOI: 10.1016/j.snb.2016.09.077
Google Scholar