[1]
H. Greve, C. Pochstein, H. Takele, V. Zaporojtchenko, Nanostructured magnetic Fe-Ni-Co/Teflon multilayers for high-frequency applications in the gigahertz range, Appl. Phys. Lett. 89 (2006) 242501.
DOI: 10.1063/1.2402877
Google Scholar
[2]
L.X. Phua, N.N. Phuoc, C.K. Ong, Influence of field-annealing on the microstructure, magnetic and microwave properties of electrodeposited Co0.3Fe0.7 films, J. Alloy. Compd. 553 (2013) 146-151.
DOI: 10.1016/j.jallcom.2012.11.091
Google Scholar
[3]
H.W. Chang, Y.H. Huang, C.C. Hsieh, C.W. Shih, W.C. Chang, D.S. Xue, Magnetic properties and high frequency characteristic of obliquely sputtered Co–M (M=V and Nb) thin films, J. Alloy. Compd. 539 (2012) 276-279.
DOI: 10.1016/j.jallcom.2012.05.099
Google Scholar
[4]
K. Koh, J. Park, J. Park, X. Zhu, L. Lin, Core-shell magnetic nanoparticles for on-chip RF inductors, in: 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, Taipei, Taiwan, 2013: pp.465-468.
DOI: 10.1109/memsys.2013.6474279
Google Scholar
[5]
Y.J. Kim, M.G. Allen, Integrated solenoid-type inductors for high frequency applications and their characteristics, in: 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206), IEEE, Seattle, WA, USA, 1998: pp.1247-1252.
DOI: 10.1109/ectc.1998.678896
Google Scholar
[6]
K. Mallik, A. Abuelgasim, N. Hashim, P. Ashburn, C.H. de Groot, Analytical and numerical model of spiral inductors on high resistivity silicon substrates, Solid-State Electron. 93 (2014) 43-48.
DOI: 10.1016/j.sse.2013.12.009
Google Scholar
[7]
C. Kittel, On the Theory of Ferromagnetic Resonance Absorption, Phys. Rev. 73 (1948) 155-161.
Google Scholar
[8]
G.Z. Chai, N.N. Phuoc, C.K. Ong, Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film, Sci Rep. 2 (2012) 832.
DOI: 10.1038/srep00832
Google Scholar
[9]
D. Cao, J. Du, S. Zhang, L. Pan, Z. Wang, H. Feng, Z. Zhu, J. Wang, Q. Liu, Tunable Static and High-Frequency Magnetic Properties of FeCo Films by an Applied Magnetic Field, Sci Adv Mater. 8 (2016) 1061–1065.
DOI: 10.1166/sam.2016.2697
Google Scholar
[10]
S. Li, Z. Huang, J.G. Duh, M. Yamaguchi, Ultrahigh-frequency ferromagnetic properties of FeCoHf films deposited by gradient sputtering, Appl. Phys. Lett. 92 (2008) 092501.
DOI: 10.1063/1.2889447
Google Scholar
[11]
B. Botters, F. Giesen, J. Podbielski, Stress dependence of ferromagnetic resonance and magnetic anisotropy in a thin NiMnSb film on InP (001), Appl. Phys. Lett. 89 (2006) 242505.
DOI: 10.1063/1.2405885
Google Scholar
[12]
X. Zhu, Z. Wang, Y. Zhang, L. Xi, J. Wang, Q. Liu, Tunable resonance frequency of FeNi films by oblique sputtering, J. Magn. Magn. Mater. 324 (2012) 2899–2901.
DOI: 10.1016/j.jmmm.2012.04.035
Google Scholar
[13]
G.Z. Chai, N.N. Phuoc, C.K. Ong, Angular tunable zero-field ferromagnetic resonance frequency in oblique sputtered CoFeBSm thin films, Appl. Phys. Express. 7 (2014) 063001.
DOI: 10.7567/apex.7.063001
Google Scholar
[14]
U. Ebels, L. Buda, K. Ounadjela, P.E. Wigen, Ferromagnetic resonance excitation of two-dimensional wall structures in magnetic stripe domains, Phys. Rev. B. 63 (2001) 174437.
DOI: 10.1103/physrevb.63.174437
Google Scholar
[15]
D.B. Gopman, V. Sampath, H. Ahmad, S. Bandyopadhyay, J. Atulasimha, Static and Dynamic Magnetic Properties of Sputtered Fe–Ga Thin Films, IEEE Trans. Magn. 53 (2017) 1-4.
DOI: 10.1109/tmag.2017.2700404
Google Scholar
[16]
G.Z. Chai, Y. Yang, J. Zhu, M. Lin, W. Sui, D. Guo, X. Li, D. Xue, Adjust the resonance frequency of (Co90Nb10/Ta) n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers, Appl. Phys. Lett. 96 (2010) 012505.
DOI: 10.1063/1.3290252
Google Scholar