Electrochemical Hydrogenation Properties of New YNi3 and YNi4 Based Alloys

Article Preview

Abstract:

Seven multiphase YNi3 and YN4 based alloys have been prepared by arc-melting. Based on X-ray phase and structural analysis synthesized alloys depending on its composition contain intermetallics with PuNi3, Gd2Co7 and CaCu5 structure types. The influence of Y/La and Ni/Co/Mn/Al substitution on the discharge characteristics of the AB3 and AB4 electrodes was studied. Substitution Y by La and further Ni by Mn and Al lead to increasing discharge capacity from 40 to 341 mAh/g. Positive effect of Ni/Co/Al or Ni/Mn/Al substitution was also observed for the AB3 electrodes. The high discharge capacities of 318 mAh/g and 340 mAh/g were seen for the YNi2.65Co0.2Al0.15 and YNi2.65Mn0.2Al0.15 electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 331)

Pages:

25-30

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.A. Yartys, O.V. Ryabov, M.V. Lototskyy, Material Science and Structure Chemistry of Intermetallic Hydrides, SPOLOM, Lviv, (2006).

Google Scholar

[2] K. Sasaki, H.-W. Li, A. Hayashi, J. Yamabe, T. Ogura, S.M. Lyth, Hydrogen Energy Engineering, Springer Japan, (2015).

Google Scholar

[3] D.P. Broom. Hydrogen Storage Materials, Springer-Verlag London, (2011).

Google Scholar

[4] D. Linden, T.B. Reddy. Handbook of Batteries, 3rd ed., The McGraw-Hill Companies. Inc, (2002).

Google Scholar

[5] Yu.V. Verbovytskyy, I.Yu. Zavaliy, New metal-hydride electrode materials based on R1-xMgxNi3-4 alloys for chemical current sources, Mat. Sci. 51(4) (2016) 443-456.

DOI: 10.1007/s11003-016-9861-0

Google Scholar

[6] Yu.V. Verbovytskyy, I.Yu. Zavaliy, New metal-hydride electrode materials based on R2-xMgxNi4 alloys for chemical current sources, Mat. Sci. 52(6) (2017) 747-759.

DOI: 10.1007/s11003-017-0018-6

Google Scholar

[7] L. Ouyang, J. Huang, H. Wang, J. Liu, M. Zhu, Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review, Mat. Chem. Phys. 200 (2017) 164-178.

DOI: 10.1016/j.matchemphys.2017.07.002

Google Scholar

[8] W. Jiang, Y. Chen, M. Hu, C. Zheng, C. Liang, Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage, J. Alloys Compd. 887 (2021) 161381.

DOI: 10.1016/j.jallcom.2021.161381

Google Scholar

[9] C.C. Yang, C.C. Wang, M.M. Li, Q. Jiang, A start of the renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an ultra-long cycle life, J. Mater. Chem. A. 5 (2017) 1145-1152.

DOI: 10.1039/c6ta09736g

Google Scholar

[10] W. Xiong, H. Yan, L. Wang, V. Verbetsky, X. Zhao, S. Mitrokhin, B. Li, J. Li, Y. Wang Characteristics of A2B7-type La-Y-Ni-based hydrogen storage alloys modified by partially substituting Ni with Mn, Int. J. Hydrogen Energ. 42(15) (2017) P. 10131-10141.

DOI: 10.1016/j.ijhydene.2017.01.080

Google Scholar

[11] M. Latroche, R. Baddour-Hadjean, A. Percheron-Gue, Crystallographic and hydriding properties of the system La1-xCexY2Ni9 (xCe = 0, 0.5 and 1), J. Solid State Chem. 173 (2003) 236-243.

DOI: 10.1016/s0022-4596(03)00038-0

Google Scholar

[12] H. Yan, W. Xiong, L. Wang, B. Li, J. Li, X. Zhao, Investigations on AB3, A2B7 and A5B19-type La-Y-Ni system hydrogen storage alloys, Int. J. Hydrogen Energ. 42(4) (2017) 2257-2264.

DOI: 10.1016/j.ijhydene.2016.09.049

Google Scholar

[13] V.V. Berezovets, R.V. Denys, O.B. Ryabov, I.Yu. Zavaliy, Hydrides of substituted derivatives based on the YNi3 compound, Mat. Sci. 43(4) (2007) 499-507.

DOI: 10.1007/s11003-007-0058-4

Google Scholar

[14] V. Berezovets, R. Denys, I. Zavaliy, Crystal structure and thermodynamic properties of YNi2.67Mn0.33H4 hydride, Visnyk Lviv Univ. Ser. Chem. 49(1) (2008) 121-127.

Google Scholar

[15] Yu.V. Verbovytskyy, R.V. Denis, V.V. Shtender, I.Yu. Zavaliy, Phase-structural and electrochemical properties of La2MgNi9 alloys, Powder Metall. Met. Ceram. 54 (2015) 220-226.

DOI: 10.1007/s11106-015-9725-4

Google Scholar

[16] V. Shtender, R. Denys, V. Paul-Boncour, I. Zavaliy, Yu. Verbovytskyy, D. Taylor, Crystal structure, hydrogen absorption-desorption behaviour and magnetic properties of the Nd3-xMgxCo9 alloys, J. Alloys Compd. 695 (2017) 1426-1435.

DOI: 10.1016/j.jallcom.2016.10.268

Google Scholar

[17] C.C. Wang, Y.T. Zhou, C.C. Yang, Q. Jiang, A strategy for designing new AB4.5-type hydrogen storage alloys with high capacity and long cycling life, J. Power Sources 398 (2018) 42-48.

DOI: 10.1016/j.jpowsour.2018.07.041

Google Scholar

[18] M. Werwiński, A. Szajek, A. Marczyńska, L. Smardz, M. Nowak, M. Jurczyk, Effect of Gd and Co content on electrochemical and electronic properties of La1.5Mg0.5Ni7 alloys: A combined experimental and first-principles study, J. Alloys Compd. 773 (2019) 131-139.

DOI: 10.1016/j.jallcom.2018.09.146

Google Scholar

[19] S. Zhao, H. Wang, R. Hu, W. Jiang, J. Liu, L. Ouyang, M. Zhu, Phase transformation and hydrogen storage properties of LaY2Ni10.5 superlattice alloy with single Gd2Co7-type or Ce2Ni7-type structure, J. Alloys Compd. 868 (2021) 159254.

DOI: 10.1016/j.jallcom.2021.159254

Google Scholar

[20] S. Zhou, X. Zhang, L. Wang, Y. Zhao, W. Xiong, B. Li, J. Li, J. Xu, H. Yan, Effect of element substitution and surface treatment on low temperature properties of AB3.42-type La-Y-Ni based hydrogen storage alloy, Int. J. Hydrogen Energy 46 (2021) 3414-3424.

DOI: 10.1016/j.ijhydene.2020.10.158

Google Scholar

[21] V. Shtender, R. Denys, V. Paul-Boncour, A.Riabov, I. Zavaliy, Hydrogenation properties and crystal structure of YMgT4 (Т=Co, Ni, Cu) compounds, J. Alloys Compd. 603 (2014) 7-13.

DOI: 10.1016/j.jallcom.2014.03.030

Google Scholar

[22] V. Shtender, R. Denys, V. Paul-Boncour, Yu. Verbovytskyy, I. Zavaliy, Effect of Co substitution on hydrogenation and magnetic properties of NdMgNi4 alloy, J. Alloys Compd. 639 (2015) 526-532.

DOI: 10.1016/j.jallcom.2015.03.187

Google Scholar

[23] Yu.V. Verbovytskyy, V.V. Shtender, P.Ya. Lyutyy, I. Yu. Zavaliy, Electrode materials based on LaMgNi4-xCox (0 ≤ x ≤ 1) alloys, Powder Metall. Met. Ceram. 55 (2017) 559-566.

DOI: 10.1007/s11106-017-9839-y

Google Scholar

[24] Yu. Verbovytskyy, V. Shtender, A. Hackemer, H. Drulis, I. Zavaliy, P. Lyutyy, Solid-gas and electrochemical hydrogenation properties of the La1-xNdxMgNi4-yCoy alloys, J. Alloys Compd. 741 (2018) 307-314.

DOI: 10.1016/j.jallcom.2018.01.067

Google Scholar

[25] V. Oprysk, Yu. Verbovytskyy, V. Shtender, P. Lyutyy, I. Zavaliy, The Pr1-xLaxMgNi4-yCoy alloys: Synthesis, structure and hydrogenation properties, Solid State Sci. 84 (2018) 112-119.

DOI: 10.1016/j.solidstatesciences.2018.08.009

Google Scholar

[26] Yu.V. Verbovytskyy, I.Yu. Zavaliy, V.V. Berezovets, P.Ya. Lyutyy, Solid gas and electrochemical hydrogenation properties of the R1-xR'xMgNi4-yCoy (R, R' = Y, La, Ce) alloys, Physics Chem. Solid State. 21(3) (2020) 503-509.

DOI: 10.15330/pcss.21.3.503-509

Google Scholar

[27] Yu. Verbovytskyy, Yu. Kosarchyn, I. Zavaliy, Solid gas and electrochemical hydrogenation properties of the selected R,R'MgNi4-xMx (R,R' = La, Pr, Nd; M = Fe, Mn; x = 0.5, 1) alloys, French-Ukrainian J. Chem. 8(2) (2020) 126-139.

DOI: 10.17721/fujcv8i2p126-139

Google Scholar

[28] Yu. Verbovytskyy, V. Oprysk, V. Paul-Boncour, Yu. Zavaliy, V. Berezovets, P. Lyutyy, Yu. Kosarchyn, Solid gas and electrochemical hydrogenation of the selected alloys (R',R')2-xMgxNi4-yCoy (R', R', = Pr, Nd; x = 0.8-1.2; y = 0-2), J. Alloys Compd. 876 (2021) 160155.

DOI: 10.1016/j.jallcom.2021.160155

Google Scholar

[29] W. Kraus, G. Nolge, PowderCell for Windows, Version 2.3, Federal Institute for Materials Research and Testing, Berlin, Germany, (1999).

Google Scholar

[30] J. Rodriguez-Carvajal, FullProf. A Program for Rietveld Refinement and Pattern Machining Analysis, Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr., Toulouse, France, (1990).

Google Scholar