Electronic Structure of Tl4CdI6: First-Principles Calculations and X-Ray Photoelectron Spectroscopy Measurements

Article Preview

Abstract:

We report on experimental and theoretical studies of the electronic structure of ternary Tl4CdI6 alloy. Our XPS results indicate low hygroscopicity of its surface. The first-principle calculations indicate that the valence-band region of Tl4CdI6 is dominated by contributions of I 5p states (mainly at the top and the central portion), while its bottom is prevailed by contributions of Tl 6s states. The theoretical data indicate that the Tl4CdI6 compound is a direct gap semiconductor with the band gap value of Eg = 2.03 eV. The calculations reveal that the significant covalent component (in addition to ionic component) is characteristic for the chemical Tl–I and Cd–I bonds of Tl4CdI6.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 331)

Pages:

31-36

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.N. Sreejith, A.I. Yahya, Rafiuddin, A. Afaq, Solid State Ionics 86-88 (1996) 137-139.

Google Scholar

[2] Y.E. Ermolenko, D.S. Kalyagin, S.N. Subbotina, V.V. Kolodnikov, Y.G. Vlasov, Prikl. Khim. 86 (2013) 192-199.

Google Scholar

[3] V.A. Franiv, PhD Thesis, Ivan Franko Lviv National University, (2015).

Google Scholar

[4] A.A. Lavrentyev, B.V. Gabrelian, T.V. Vu, P.N. Shkumat, P.M. Fochuk, O.V. Parasyuk, I.V. Kityk, I.V. Luzhnyi, O.Y. Khyzhun, M. Piasecki, Inorg. Chem. 55 (2016) 10547–10557.

DOI: 10.1021/acs.inorgchem.6b01389

Google Scholar

[5] K.I. Avdienko, D.V. Badikov, V.V. Badikov, V.I. Chizhikov, V.L. Panyutin, G.S. Shevyrdyaeva, S.I. Scherbakov, E.S. Scherbakova, Opt. Mater. 23 (2003) 569–573.

DOI: 10.1016/s0925-3467(03)00023-5

Google Scholar

[6] N.B. Singh, D.R. Suhre, K. Green, N. Fernelius, F.K. Hopkins, J. Cryst. Growth 274 (2005) 132-137.

Google Scholar

[7] V.O. Yukhymchuk, V.M. Dzhagan, N.V. Mazur, O.V. Parasyuk, O.Y. Khyzhun, I.V. Luzhnyi, A.M. Yaremko, M.Y. Valakh, A.P. Litvinchuk, J. Raman Spectrosc. 49 (2018) 1840-1848.

DOI: 10.1002/jrs.5468

Google Scholar

[8] H.P. Beck, W. Milius, Z. Anorg. Allg. Chem.539 (1986) 7-17.

Google Scholar

[9] O.V. Parasyuk, O.Y. Khyzhun, M. Piasecki, I.V. Kityk, G. Lakshminarayana, I. Luzhnyi, P.M. Fochuk, A.O. Fedorchuk, S.I. Levkovets, O.M. Yurchenko, L.V. Piskach, Mater. Chem. Phys. 187 (2017) 156–163.

DOI: 10.1016/j.matchemphys.2016.11.061

Google Scholar

[10] A.H. Reshak, O.Y. Khyzhun, I.V. Kityk, A.O. Fedorchuk, H. Kamarudin, S. Auluck, O.V. Parasyuk, Sci. Adv. Mater. 5 (2013) 316–327.

Google Scholar

[11] I.V. Luzhnyi, PhD Thesis, Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, (2021).

DOI: 10.15407/knit2004.02.059

Google Scholar

[12] P. Blaha, K. Schwarz, J. Luitz, WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties, Technical University, Vienna, (1999).

Google Scholar

[13] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.

Google Scholar

[14] J.F. Moulder, W.E. Stickle, P.E. Sobol, K.E. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Ed. by J. Chastian), Perkin-Elmer, Eden Prairie (Minnesota), (1992).

Google Scholar

[15] T.V. Vu, I.V. Luzhnyi, G.L. Myronchuk, V.L. Bekenev, M.S. Bohdanyuk, A.A. Lavrentyev, B.V. Gabrelian, O.V. Parasyuk, O.Y. Khyzhun, Opt. Mater. 114 (2021) 110982.

DOI: 10.1016/j.optmat.2021.110982

Google Scholar