[1]
Klueh RL, Hashimoto N, Maziasz PJ. Development of new nano-particle-strengthened martensitic steels. Scr Mater. 2005;53(3):275–80.
DOI: 10.1016/j.scriptamat.2005.04.019
Google Scholar
[2]
Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater. 1993;204:65–73.
DOI: 10.1016/0022-3115(93)90200-i
Google Scholar
[3]
Hashim J, Looney L, Hashmi MSJ. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;(92–93):1–7.
DOI: 10.1016/s0924-0136(99)00118-1
Google Scholar
[4]
Ramnath BV, Elanchezhian C, Annamalai RM, .Aravind S, Atreya TSA, Vignesh V, et al. Aluminium metal matrix composites - a review. Rev Adv Mater Sci. 2014;38(1):55–60.
Google Scholar
[5]
Kareem A, Qudeiri JA, Abdudeen A, Ahammed T, Ziout A. A review on AA 6061 metal matrix composites produced by stir casting. Materials (Basel). 2021;14(1):1–22.
DOI: 10.3390/ma14010175
Google Scholar
[6]
Awasthi A, Panwar N, Wadhwa AS, Chauhan A. Mechanical characterization of hybrid aluminium composite - a review. Mater Today Proc. 2018;5:27840–4.
DOI: 10.1016/j.matpr.2018.10.021
Google Scholar
[7]
Moses JJ, Dinaharan I, Sekhar SJ. Characterization of silicon carbide particulate reinforced AA6061 aluminum alloy composites produced via stir casting. Procedia Mater Sci. 2014; 5: 106–12.
DOI: 10.1016/j.mspro.2014.07.247
Google Scholar
[8]
Sivananthan S, Ravi K, Samuel SJ. Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route. Mater Today Proc. 2020; 21:968–70.
DOI: 10.1016/j.matpr.2019.09.068
Google Scholar
[9]
Maurya NK, Maurya M, Srivastava AK, Dwivedi SP, Kumar A, Chauhan S. Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique. Mater Today Proc. 2019;25:755–8.
DOI: 10.1016/j.matpr.2019.09.003
Google Scholar
[10]
Kalaiselvan K, Murugan N, Parameswaran S. Production and characterization of AA6061-B4C stir cast composite. Mater Des. 2011;32:4004–9.
DOI: 10.1016/j.matdes.2011.03.018
Google Scholar
[11]
Ravi B, Balu Naik BB, Udaya Prakash J. Characterization of Aluminium Matrix Composites (AA6061/B4C) fabricated by stir casting technique. Mater Today Proc. 2015;2:2984–90.
DOI: 10.1016/j.matpr.2015.07.282
Google Scholar
[12]
Bhujanga DP, Manohara HR. Processing and evaluation of mechanical properties and dry sliding wear behavior of AA6061-B4C composites. Mater Today Proc. 2018;5:19773–82.
DOI: 10.1016/j.matpr.2018.06.340
Google Scholar
[13]
Manjunatha B, Niranjan HB, Satyanarayana KG. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy. Mater Sci Eng A. 2015;632:147–55.
DOI: 10.1016/j.msea.2015.02.007
Google Scholar
[14]
Gireesh CH, Prasad KGD, Ramji K. Experimental investigation on mechanical properties of an Al6061 hybrid metal matrix composite. J Compos Sci. 2018;2(3):1–10.
DOI: 10.3390/jcs2030049
Google Scholar
[15]
Kandpal BC, Kumar J, Singh H. Fabrication and characterisation of Al2O3/aluminium alloy 6061 composites fabricated by Stir casting. Mater Today Proc. 2017;4:2783–92.
DOI: 10.1016/j.matpr.2017.02.157
Google Scholar
[16]
Pandey U, Purohit R, Agarwal P, Dhakad SK, Rana RS. Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs). Mater Today Proc. 2017;4:5452–60.
DOI: 10.1016/j.matpr.2017.05.057
Google Scholar
[17]
Gopalakrishnan S, Murugan N. Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method. Compos Part B Eng. 2012;43:302–8.
DOI: 10.1016/j.compositesb.2011.08.049
Google Scholar
[18]
Ravi Kumar K, Kiran K, Sreebalaji VS. Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J Alloys Compd. 2017;723:795–801.
DOI: 10.1016/j.jallcom.2017.06.309
Google Scholar
[19]
Raviraj MS, Sharanprabhu CM, Mohankumar GC. Experimental Analysis on Processing and Properties of Al-TiC Metal Matrix Composites. Procedia Mater Sci. 2014;5:2032–8.
DOI: 10.1016/j.mspro.2014.07.536
Google Scholar
[20]
Marachakkanavar M, Sanjey SJ, Korade DN, Jagtap KR. Experimental investigation of mechanical properties of Al6061 reinforced with iron ore. Mater Today Proc. 2017;4:8219–25.
DOI: 10.1016/j.matpr.2017.07.164
Google Scholar
[21]
Gan YX, Solomon D, Reinbolt M. Friction stir processing of particle reinforced composite materials. Materials (Basel). 2010;3:329–50.
DOI: 10.3390/ma3010329
Google Scholar
[22]
Youssef YM, El-Sayed MA. Effect of reinforcement particle size and weight fraction on the mechanical properties of SiC particle reinforced al metal matrix composites. Int Rev Mech Eng. 2016;10(4):261–5.
DOI: 10.15866/ireme.v10i4.9509
Google Scholar
[23]
Ramachandran M, Thirunavukkarasu DK, Pramod DVR. Squeeze casting of Sic, fly-ash reinforced aluminium alloy hybrid composites - a review. Turkish J Comput Math Educ. 2021;12(3):3631–4.
DOI: 10.17762/turcomat.v12i3.1643
Google Scholar
[24]
Zhou D, Qiu F, Wang H, Jiang Q. Manufacture of nano-sized particle-reinforced metal matrix composites: A review. Acta Metall Sin. 2014;27(5):798–805.
DOI: 10.1007/s40195-014-0154-z
Google Scholar
[25]
Malaki M, Xu W, Kasar AK, Menezes PL, Dieringa H, Varma RS, et al. Advanced metal matrix nanocomposites. Vol. 9, Metals. 2019. 1–39 p.
DOI: 10.3390/met9030330
Google Scholar
[26]
Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y. Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des. 2014; 55: 921–8.
DOI: 10.1016/j.matdes.2013.10.060
Google Scholar
[27]
Muley A.V., Aravindan S, Singh IP. Nano and hybrid aluminum based metal matrix composites: An overview. Manuf Rev. 2015;2:15.
DOI: 10.1051/mfreview/2015018
Google Scholar
[28]
Sachinkumar S, Narendranath S, Chakradhar D. Studies on microstructure and mechanical characteristics of as cast AA6061/SiC/fly ash hybrid AMCs produced by stir casting. Mater Today Proc. 2020;20:A1–5.
DOI: 10.1016/j.matpr.2020.01.266
Google Scholar
[29]
Panwar N, Chauhan A. Fabrication methods of particulate reinforced aluminium metal matrix composite - a review. Mater Today Proc. 2018;5:5933–9.
DOI: 10.1016/j.matpr.2017.12.194
Google Scholar
[30]
Yang Y, Lan J, Li X. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A. 2004;380:378–83.
DOI: 10.1016/j.msea.2004.03.073
Google Scholar
[31]
Kumar N, Irfan G. Mechanical, microstructural properties and wear characteristics of hybrid aluminium matrix nano composites (HAMNCs) - review. Mater Today Proc. 2021; 45: 619–25.
DOI: 10.1016/j.matpr.2020.02.719
Google Scholar
[32]
Dwivedi SP, Sharma S, Mishra RK. Electromagnetic stir casting and its process parameters for the fabrication and refined the grain structure of metal matrix composites – a review. Int J Adv Res Innov. 2014;2(3):639–49.
DOI: 10.51976/ijari.231421
Google Scholar
[33]
Pitchayyapillai G, Seenikannan P, Balasundar P, Narayanasamy P. Effect of nano-silver on microstructure, mechanical and tribological properties of cast 6061 aluminum alloy. Trans Nonferrous Met Soc China (English Ed. 2017;27:2137–45.
DOI: 10.1016/s1003-6326(17)60239-5
Google Scholar
[34]
Sahu K, Rana RS, Purohit R, Koli DK, Rajpurohit SS, Singh M. Wear behavior and micro-structural study of Al/Al2O3 nano-composites before and after heat treatment. Mater Today Proc. 2015;2:1892–900.
DOI: 10.1016/j.matpr.2015.07.143
Google Scholar
[35]
Karandikar PG, Chou TW. Characterization of aluminium-matrix composites made by compocasting and its variations. J Mater Sci. 1991;26:2573–8.
DOI: 10.1007/bf02387719
Google Scholar
[36]
Khosravi H, Bakhshi H, Salahinejad E. Effects of compocasting process parameters on microstructural characteristics and tensile properties of A356-SiCp composites. Trans Nonferrous Met Soc China. 2014;24:2482–8.
DOI: 10.1016/s1003-6326(14)63374-4
Google Scholar
[37]
Li X, Yang Y, Weiss D. Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast Aluminum Alloy A356. Metall Sci Tecnol. 2008; 26(2):12–20.
Google Scholar
[38]
ABB. Optimised electromagnetic stirring in melting and holding furnaces [Internet]. Available from: https://new.abb.com/metals/abb-in-metals/references/optimised-ems-in-aluminium-melting-and-holding-furnaces.
DOI: 10.1007/978-3-030-05864-7_145
Google Scholar
[39]
Beinerts, T., Bojarevics, A., Baranovskis, R., Milgravis, M., Kaldre I. Permanent magnet dipole stirrer for aluminium furnaces. IOP Conf Ser Mater Sci Eng. 2018;424.
DOI: 10.1088/1757-899x/424/1/012037
Google Scholar
[40]
Bojarevičs A, Beinerts T, Gelfgat Y, Kaldre I. Permanent magnet centrifugal pump for liquid aluminium stirring. J Int J Cast Met Res. 2016;29(3):154–7.
DOI: 10.1080/13640461.2015.1120998
Google Scholar
[41]
Grants I. Rotating magnetic dipole-driven flows in a conducting liquid cylinder. Phys Fluids. 2021; 33.
DOI: 10.1063/5.0047240
Google Scholar
[42]
Bojarevics A, Beinerts T, Sarma M, Gelfgat Y. Rotating Permanent Magnet Dipoles for Stirring and Pumping of Liquid Metals. J Manuf Sci Prod. 2015;15(1):35–39.
DOI: 10.1515/jmsp-2014-0039
Google Scholar
[43]
Baranovskis R, Sarma M, Ščepanskis M, Beinerts T, Gaile A, Eckert S, et al. Investigation of particle dynamics and solidification in a two-phase system by neutron radiography. MAGNETOHYDRODYNAMICS. 2020;56(1):43–50.
DOI: 10.22364/mhd.56.1.4
Google Scholar