Electromagnetic Methods for Production of Aluminium Metal Matrix Composites

Article Preview

Abstract:

Aluminium metal matrix composites (AMC) are perspective materials for a wide range of applications in automotive, aerospace and other industries where material mechanical properties and weight ratio is crucial. In AMC manufacturing through metallurgical process the main obstacle for particle introduction into the melt is poor particle wettability and their tendency to form agglomerates due to van der Waals and interfacial forces. Most of currently used AMC manufacturing methods through metallurgical route are effective only for small quantities or are time consuming, even though metallurgical AMC production route would promise significant cost savings. In this study we propose a permanent magnet stirring technology developed by IP UL as tool for alternative realization of stir- and compo-casting methods for AMC production. First results of contactless stirred semi-solid aluminium alloys show effective alloy stirring in melt volume and intense surface deformations that can break the oxide layer and stir in the reinforcement material from the melt surface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 332)

Pages:

19-27

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Klueh RL, Hashimoto N, Maziasz PJ. Development of new nano-particle-strengthened martensitic steels. Scr Mater. 2005;53(3):275–80.

DOI: 10.1016/j.scriptamat.2005.04.019

Google Scholar

[2] Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater. 1993;204:65–73.

DOI: 10.1016/0022-3115(93)90200-i

Google Scholar

[3] Hashim J, Looney L, Hashmi MSJ. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;(92–93):1–7.

DOI: 10.1016/s0924-0136(99)00118-1

Google Scholar

[4] Ramnath BV, Elanchezhian C, Annamalai RM, .Aravind S, Atreya TSA, Vignesh V, et al. Aluminium metal matrix composites - a review. Rev Adv Mater Sci. 2014;38(1):55–60.

Google Scholar

[5] Kareem A, Qudeiri JA, Abdudeen A, Ahammed T, Ziout A. A review on AA 6061 metal matrix composites produced by stir casting. Materials (Basel). 2021;14(1):1–22.

DOI: 10.3390/ma14010175

Google Scholar

[6] Awasthi A, Panwar N, Wadhwa AS, Chauhan A. Mechanical characterization of hybrid aluminium composite - a review. Mater Today Proc. 2018;5:27840–4.

DOI: 10.1016/j.matpr.2018.10.021

Google Scholar

[7] Moses JJ, Dinaharan I, Sekhar SJ. Characterization of silicon carbide particulate reinforced AA6061 aluminum alloy composites produced via stir casting. Procedia Mater Sci. 2014; 5: 106–12.

DOI: 10.1016/j.mspro.2014.07.247

Google Scholar

[8] Sivananthan S, Ravi K, Samuel SJ. Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route. Mater Today Proc. 2020; 21:968–70.

DOI: 10.1016/j.matpr.2019.09.068

Google Scholar

[9] Maurya NK, Maurya M, Srivastava AK, Dwivedi SP, Kumar A, Chauhan S. Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique. Mater Today Proc. 2019;25:755–8.

DOI: 10.1016/j.matpr.2019.09.003

Google Scholar

[10] Kalaiselvan K, Murugan N, Parameswaran S. Production and characterization of AA6061-B4C stir cast composite. Mater Des. 2011;32:4004–9.

DOI: 10.1016/j.matdes.2011.03.018

Google Scholar

[11] Ravi B, Balu Naik BB, Udaya Prakash J. Characterization of Aluminium Matrix Composites (AA6061/B4C) fabricated by stir casting technique. Mater Today Proc. 2015;2:2984–90.

DOI: 10.1016/j.matpr.2015.07.282

Google Scholar

[12] Bhujanga DP, Manohara HR. Processing and evaluation of mechanical properties and dry sliding wear behavior of AA6061-B4C composites. Mater Today Proc. 2018;5:19773–82.

DOI: 10.1016/j.matpr.2018.06.340

Google Scholar

[13] Manjunatha B, Niranjan HB, Satyanarayana KG. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy. Mater Sci Eng A. 2015;632:147–55.

DOI: 10.1016/j.msea.2015.02.007

Google Scholar

[14] Gireesh CH, Prasad KGD, Ramji K. Experimental investigation on mechanical properties of an Al6061 hybrid metal matrix composite. J Compos Sci. 2018;2(3):1–10.

DOI: 10.3390/jcs2030049

Google Scholar

[15] Kandpal BC, Kumar J, Singh H. Fabrication and characterisation of Al2O3/aluminium alloy 6061 composites fabricated by Stir casting. Mater Today Proc. 2017;4:2783–92.

DOI: 10.1016/j.matpr.2017.02.157

Google Scholar

[16] Pandey U, Purohit R, Agarwal P, Dhakad SK, Rana RS. Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs). Mater Today Proc. 2017;4:5452–60.

DOI: 10.1016/j.matpr.2017.05.057

Google Scholar

[17] Gopalakrishnan S, Murugan N. Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method. Compos Part B Eng. 2012;43:302–8.

DOI: 10.1016/j.compositesb.2011.08.049

Google Scholar

[18] Ravi Kumar K, Kiran K, Sreebalaji VS. Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J Alloys Compd. 2017;723:795–801.

DOI: 10.1016/j.jallcom.2017.06.309

Google Scholar

[19] Raviraj MS, Sharanprabhu CM, Mohankumar GC. Experimental Analysis on Processing and Properties of Al-TiC Metal Matrix Composites. Procedia Mater Sci. 2014;5:2032–8.

DOI: 10.1016/j.mspro.2014.07.536

Google Scholar

[20] Marachakkanavar M, Sanjey SJ, Korade DN, Jagtap KR. Experimental investigation of mechanical properties of Al6061 reinforced with iron ore. Mater Today Proc. 2017;4:8219–25.

DOI: 10.1016/j.matpr.2017.07.164

Google Scholar

[21] Gan YX, Solomon D, Reinbolt M. Friction stir processing of particle reinforced composite materials. Materials (Basel). 2010;3:329–50.

DOI: 10.3390/ma3010329

Google Scholar

[22] Youssef YM, El-Sayed MA. Effect of reinforcement particle size and weight fraction on the mechanical properties of SiC particle reinforced al metal matrix composites. Int Rev Mech Eng. 2016;10(4):261–5.

DOI: 10.15866/ireme.v10i4.9509

Google Scholar

[23] Ramachandran M, Thirunavukkarasu DK, Pramod DVR. Squeeze casting of Sic, fly-ash reinforced aluminium alloy hybrid composites - a review. Turkish J Comput Math Educ. 2021;12(3):3631–4.

DOI: 10.17762/turcomat.v12i3.1643

Google Scholar

[24] Zhou D, Qiu F, Wang H, Jiang Q. Manufacture of nano-sized particle-reinforced metal matrix composites: A review. Acta Metall Sin. 2014;27(5):798–805.

DOI: 10.1007/s40195-014-0154-z

Google Scholar

[25] Malaki M, Xu W, Kasar AK, Menezes PL, Dieringa H, Varma RS, et al. Advanced metal matrix nanocomposites. Vol. 9, Metals. 2019. 1–39 p.

DOI: 10.3390/met9030330

Google Scholar

[26] Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y. Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des. 2014; 55: 921–8.

DOI: 10.1016/j.matdes.2013.10.060

Google Scholar

[27] Muley A.V., Aravindan S, Singh IP. Nano and hybrid aluminum based metal matrix composites: An overview. Manuf Rev. 2015;2:15.

DOI: 10.1051/mfreview/2015018

Google Scholar

[28] Sachinkumar S, Narendranath S, Chakradhar D. Studies on microstructure and mechanical characteristics of as cast AA6061/SiC/fly ash hybrid AMCs produced by stir casting. Mater Today Proc. 2020;20:A1–5.

DOI: 10.1016/j.matpr.2020.01.266

Google Scholar

[29] Panwar N, Chauhan A. Fabrication methods of particulate reinforced aluminium metal matrix composite - a review. Mater Today Proc. 2018;5:5933–9.

DOI: 10.1016/j.matpr.2017.12.194

Google Scholar

[30] Yang Y, Lan J, Li X. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A. 2004;380:378–83.

DOI: 10.1016/j.msea.2004.03.073

Google Scholar

[31] Kumar N, Irfan G. Mechanical, microstructural properties and wear characteristics of hybrid aluminium matrix nano composites (HAMNCs) - review. Mater Today Proc. 2021; 45: 619–25.

DOI: 10.1016/j.matpr.2020.02.719

Google Scholar

[32] Dwivedi SP, Sharma S, Mishra RK. Electromagnetic stir casting and its process parameters for the fabrication and refined the grain structure of metal matrix composites – a review. Int J Adv Res Innov. 2014;2(3):639–49.

DOI: 10.51976/ijari.231421

Google Scholar

[33] Pitchayyapillai G, Seenikannan P, Balasundar P, Narayanasamy P. Effect of nano-silver on microstructure, mechanical and tribological properties of cast 6061 aluminum alloy. Trans Nonferrous Met Soc China (English Ed. 2017;27:2137–45.

DOI: 10.1016/s1003-6326(17)60239-5

Google Scholar

[34] Sahu K, Rana RS, Purohit R, Koli DK, Rajpurohit SS, Singh M. Wear behavior and micro-structural study of Al/Al2O3 nano-composites before and after heat treatment. Mater Today Proc. 2015;2:1892–900.

DOI: 10.1016/j.matpr.2015.07.143

Google Scholar

[35] Karandikar PG, Chou TW. Characterization of aluminium-matrix composites made by compocasting and its variations. J Mater Sci. 1991;26:2573–8.

DOI: 10.1007/bf02387719

Google Scholar

[36] Khosravi H, Bakhshi H, Salahinejad E. Effects of compocasting process parameters on microstructural characteristics and tensile properties of A356-SiCp composites. Trans Nonferrous Met Soc China. 2014;24:2482–8.

DOI: 10.1016/s1003-6326(14)63374-4

Google Scholar

[37] Li X, Yang Y, Weiss D. Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast Aluminum Alloy A356. Metall Sci Tecnol. 2008; 26(2):12–20.

Google Scholar

[38] ABB. Optimised electromagnetic stirring in melting and holding furnaces [Internet]. Available from: https://new.abb.com/metals/abb-in-metals/references/optimised-ems-in-aluminium-melting-and-holding-furnaces.

DOI: 10.1007/978-3-030-05864-7_145

Google Scholar

[39] Beinerts, T., Bojarevics, A., Baranovskis, R., Milgravis, M., Kaldre I. Permanent magnet dipole stirrer for aluminium furnaces. IOP Conf Ser Mater Sci Eng. 2018;424.

DOI: 10.1088/1757-899x/424/1/012037

Google Scholar

[40] Bojarevičs A, Beinerts T, Gelfgat Y, Kaldre I. Permanent magnet centrifugal pump for liquid aluminium stirring. J Int J Cast Met Res. 2016;29(3):154–7.

DOI: 10.1080/13640461.2015.1120998

Google Scholar

[41] Grants I. Rotating magnetic dipole-driven flows in a conducting liquid cylinder. Phys Fluids. 2021; 33.

DOI: 10.1063/5.0047240

Google Scholar

[42] Bojarevics A, Beinerts T, Sarma M, Gelfgat Y. Rotating Permanent Magnet Dipoles for Stirring and Pumping of Liquid Metals. J Manuf Sci Prod. 2015;15(1):35–39.

DOI: 10.1515/jmsp-2014-0039

Google Scholar

[43] Baranovskis R, Sarma M, Ščepanskis M, Beinerts T, Gaile A, Eckert S, et al. Investigation of particle dynamics and solidification in a two-phase system by neutron radiography. MAGNETOHYDRODYNAMICS. 2020;56(1):43–50.

DOI: 10.22364/mhd.56.1.4

Google Scholar