Material Optimization through Thin Film Compositional Spreads

Article Preview

Abstract:

Genome engineering is a powerful tool that enhances the accelerated innovation in materials development allowing both the discovery and optimization of functionalities based on a wide range of techniques. Thin films engineering is in the forefront of this new approach by allowing the generation of a wide range of compositions in a limited number of experiments and taking advantage out of the possibility to use high-throughput characterization techniques. The paper exemplifies the innovation via compositional spreads generated by magnetron sputtering and the mapping of the material’s manufactured libraries via electric resistivity and interfacial contact resistance measurements.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 332)

Pages:

3-9

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Villars, Intermetallic compounds: principles and practice 1, 227 (1995).

Google Scholar

[2] A. Boettcher, G. Haase, R. Z. Thun, Metallk. 46, 386 (1955).

Google Scholar

[3] K. Kennedy, T. Stefansky, G. Davy, V.F. Zackay, E.R. Parker, J. Appl. Phys. 36, 3808 (1965).

Google Scholar

[4] X. D. Xiang, X. Sun, G. Briceno, Y. Lou, K. A. Wang, H. Chang, et al, Science 268, 1738 (1995).

Google Scholar

[5] E. J. Amis, X. D. Xiang, J. C.Zhao, MRS Bull 27, 295 (2002).

Google Scholar

[6] X. D. Xiang, I. Takeuchi, , ed., Combinatorial materials synthesis. New York: Dekker (2003).

Google Scholar

[7] R. A. Potyrailo, E. J. Amis, ed. High-throughput analysis: a tool for combinatorial materials science. Kluwer (2003).

Google Scholar

[8] H. Koinuma, I. Takeuchi, Nature Materials 3, 429 (2004).

Google Scholar

[9] G. Briceno, H. Chang, X. Sun, P. G. Schultz, X. D. Xiang. Science 270, 273 (1995).

Google Scholar

[10] R. B. van Dover, L. F. Schneemeyer, R. M. Fleming, Science 392, 162 (1998).

Google Scholar

[11] F. Tsui, L. He, L. Ma, A. Tkachuk, Y. S. Chu, K. Nakajima, et al. Phys Rev Lett 91 (2003)177203-1.

Google Scholar

[12] I. Yanase, T. Ohtaki, M. Watanabe, Appl Surf Sci 189, 292 (2002).

Google Scholar

[13] Kajiyama A, Kazunori T, Arihara K, Inada T, Sasaki H, Kondo S, et al. J Electrochem Soc 150, A157 (2003).

Google Scholar

[14] F. Tsui, L. He, L. Ma, A. Tkachuk, Y. S. Chu, K. Nakajima, et al. Phys Rev Lett 91, 177203-1 (2003).

Google Scholar

[15] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, et al. Science 291, 854 (2001).

Google Scholar

[16] J-C Zhao, M.R. Jackson, L. A. Peluso, L. N. Brewer, MRS Bulletin 27(04) (2002).

Google Scholar

[17] I. Vida-Simiti, N. Jumate, G. Thalmaier, N. Sechel, V. Moldovan, J Porous Mater (2010).

DOI: 10.1007/s10934-010-9442-9

Google Scholar

[18] J. C. Zhao, M. R. Jackson, L. A. Peluso, Acta Materialia 51, 6395 (2003).

Google Scholar

[19] Y. Matsumoto, M. Murakami, Z. Jin, A. Ohtomo, M. Lippmaa, M. Kawasaki, et al. Jpn J Appl Phys 38, L603 (1999).

Google Scholar

[20] X. D. Xiang. Appl Surf Sci 189, 188 (2002).

Google Scholar

[21] H. Koinuma, H. N. Aiyer, Y. Matsumoto. Sci Tech Adv Mater 1, 1 (2000).

Google Scholar

[22] C. M. Crăciunescu et al., Smart Structures and Materials 2002: Active Materials: Behavior and Mechanics, SPIE Proceedings, 4699, 235-244 (2002).

Google Scholar

[23] I. Takeuchi, O. O. Famodu, J. C. Read, M. A. Aronova, K. S. Chang, C. Craciunescu, et al. Nature Mater. 2, 180 (2003).

Google Scholar

[24] R. Pullar, et al, Journal of the European Ceramic Society 27, 3861-3865 (2007).

Google Scholar

[25] K. Fujimoto, K. Onoda, S. Ito, Materials Science Forum, 469, 534-536 (2007).

Google Scholar

[26] A. D. W. Todd, R. E. Mar, J. R. Dahn, Journal of the Electrochemical Society 153 (2006).

Google Scholar

[27] H. Lee, W. I. Choi, J. Ihm, Physical Review Letters 97, 056104/1-4 (2006).

Google Scholar

[28] W. Zhang, W. S. Zhao, D. X. Li, M. L. Sui, Int. J. of Mater.Res. 97, 1143-51 (2006).

Google Scholar

[29] R. Germaud et al, Applied Physics A84, 77 (2006).

Google Scholar

[30] S. Groudeva-Zotova, et al,. Thin Solid Films 495, 169 (2006).

Google Scholar

[31] E. Chunsheng, et al, Journal of Allied Physics 99, 11390 (2006).

Google Scholar

[32] A. Ludwig, N. Zotov, A. Savana, S. Groudeva-Zotova, Applied Surface Science 252, 2518 (2006).

Google Scholar

[33] R. Yamaguchi, et al. Japanese Journal of Applied Physics, 45, 5911 (2006).

Google Scholar

[34] S. Conti, M. Lenz, M. Rumpf, Journal of the Mechanics and Physics of Solids 55, 1462 (2007).

Google Scholar

[35] G. P. Rockwell, A. Timmons, A. Touhami, J. R. Dahn, Applied Surface Science 253, 5943 (2007).

Google Scholar

[36] E. Tekin, et al., Adv. Funct. Mater. 17, 23 (2007).

Google Scholar