[1]
João Pedro de Sousa Oliveira - Laser Welding of Shape Memory Alloys, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2016, https://run.unl.pt/handle/10362/19038 (Accessed: 10.05.2021).
Google Scholar
[2]
K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science, Volume 50, Issue 5, 2005, Pages 511-678, ISSN 0079-6425, https://doi.org/10.1016/j.pmatsci.2004.10.001.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[3]
Z. Zeng, B. Panton, J.P. Oliveira, et al., Dissimilar laser welding of NiTi shape memory alloy and copper, Smart Mater. Struct. 24 (12503612) (2015).
DOI: 10.1088/0964-1726/24/12/125036
Google Scholar
[4]
Z. Zeng, J.P. Oliveira, M. Yang, et al., Functional fatigue behavior of NiTi-Cu dissimilar laser welds, Mater. Des. 114 (2017) 282–287.
DOI: 10.1016/j.matdes.2016.11.023
Google Scholar
[5]
P. Dong, H. Li, W. Wang, J. Zhou, Microstructural characterization of laser micro-welded Nitinol wires, Mater. Charact. 135 (2018) 40–45, https://doi.org/10.1016/j.matchar.2017.11.022.
DOI: 10.1016/j.matchar.2017.11.022
Google Scholar
[6]
Shamsolhodaei, Amirali & Razmpoosh, M.H. & Maletta, Carmine & Magarò, Pietro & Zhou, Y.N.. (2021). A comprehensive insight into the superelasticity measurement of laser welded NiTi shape memory alloys. Materials Letters. 287. 129310. 10.1016/j.matlet.2021.129310.
DOI: 10.1016/j.matlet.2021.129310
Google Scholar
[7]
Qian Sun, Jingyu Chen, Xiaonan Wang, Fan Gu, Caiwang Tan, Amirali Shamsolhodaei, Lining Sun, Y. Norman Zhou, Study on weld formation and segregation mechanism for dissimilar pulse laser welding of NiTi and Cu wires, Optics & Laser Technology, Volume 140, 2021, 107071, ISSN 0030-3992, https://doi.org/10.1016/j.optlastec.2021.107071.
DOI: 10.1016/j.optlastec.2021.107071
Google Scholar
[8]
J.P. Oliveira, R.M. Miranda, F.M. Braz Fernandes - Welding and Joining of NiTi Shape Memory Alloys: A Review, Progress in Materials Science, Volume 88, 2017, Pages 412-466, ISSN 0079-6425, https://doi.org/10.1016/j.pmatsci.2017.04.008.
DOI: 10.1016/j.pmatsci.2017.04.008
Google Scholar
[9]
A. Falvo, F.M. Furgiuele, C. Maletta, Laser welding of a NiTi alloy: Mechanical and shape memory behaviour, Materials Science and Engineering: A, Volume 412, Issues 1–2, 2005, Pages 235-240, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2005.08.209.
DOI: 10.1016/j.msea.2005.08.209
Google Scholar
[10]
P. Schlossmacher, T. Haas, A. Schüssler. Laser-Welding of a Ni-Rich TiNi Shape Memory Alloy :Mechanical Behavior. Journal de Physique IV Proceedings, EDP Sciences, 1997, 07 (C5), pp.C5-251- C5-256. 10.1051/jp4:1997539.
DOI: 10.1051/jp4:1997539
Google Scholar
[11]
Gugel H, Schuermann A, Theisen W. Laser welding of NiTi wires. Mater Sci Eng, A 2008;481–482:668–71. doi: http://dx.doi.org/10.1016/j.msea.2006.11.179.
DOI: 10.1016/j.msea.2006.11.179
Google Scholar
[12]
Chan CW, Man HC, Yue TM. Effects of process parameters upon the shape memory and pseudo-elastic behaviors of laser-welded NiTi thin foil. Metall Mater Trans A Phys Metall 2011;42:2264–70. doi: http://dx.doi.org/10.1007/s11661-011-0623-1.
DOI: 10.1007/s11661-011-0623-1
Google Scholar
[13]
Vieira LA, Fernandes FMMB, Miranda RMM, Silva RJC, Quintino L, Cuesta A, et al. Mechanical behaviour of Nd:YAG laser welded superelastic NiTi. Mater Sci Eng, A 2011;528:5560–5. doi: http://dx.doi.org/10.1016/j.msea.2011.03.089.
DOI: 10.1016/j.msea.2011.03.089
Google Scholar
[14]
Zhao X, Wang W, Chen L, Liu F, Huang J, Zhang H. Microstructures of cerium added laser weld of a TiNi alloy. Mater Lett 2008;62:1551–3. doi: http://dx.doi.org/10.1016/j.matlet.2007.09.021.
DOI: 10.1016/j.matlet.2007.09.021
Google Scholar
[15]
Chan CW, Man HC, Yue TM. Effect of postweld heat treatment on the microstructure and cyclic deformation behavior of laser-welded NiTi-shape memory wires. Metall Mater Trans A 2012;43:1956–65. doi: http://dx.doi.org/10.1007/s11661-011-1062-8.
DOI: 10.1007/s11661-011-1062-8
Google Scholar
[16]
Hsu YT, Wang YR, Wu SK, Chen C. Effect of CO2 laser welding on the shape-memory and corrosion characteristics of TiNi alloys. Metall Mater Trans A 2001;32:569–76. doi: http://dx.doi.org/10.1007/s11661-001-0073-2.
DOI: 10.1007/s11661-001-0073-2
Google Scholar
[17]
Braz Fernandes FM, Mahesh KK, Craciunescu CM, Oliveira JP, Schell N, Miranda RM, et al. In situ structural characterization of laser welded NiTi shape memory alloys. Mater Sci Forum 2013;738–739:338–43. doi: http://dx.doi.org/10.4028/www.scientific.net/MSF.738-739.338.
DOI: 10.4028/www.scientific.net/msf.738-739.338
Google Scholar
[18]
Oliveira JP, Miranda RM, Schell N, Braz Fernandes FM, Schell N, Braz Fernandes FM. High strain and long duration cycling behavior of laser welded NiTi sheets. Int J Fatigue 2016;83:195–200. doi: http://dx.doi.org/10.1016/j.ijfatigue.2015.10.013.
DOI: 10.1016/j.ijfatigue.2015.10.013
Google Scholar
[19]
Oliveira JP, Fernandes FMB, Schell N, Miranda RM. Shape memory effect of laser welded NiTi plates. Funct Mater Lett 2015;8:1550069. doi: http://dx.doi.org/10.1142/S1793604715500691.
DOI: 10.1142/s1793604715500691
Google Scholar
[20]
Oliveira JP, Fernandes FMB, Miranda RM, Schell N, Ocaña JL. Residual stress analysis in laser welded NiTi sheets using synchrotron X-ray diffraction. Mater Des 2016;100:180–7. doi: http://dx.doi.org/10.1016/j.matdes.2016.03.137.
DOI: 10.1016/j.matdes.2016.03.137
Google Scholar
[21]
Oliveira JP, Braz Fernandes FM, Miranda RM, Schell N, Ocaña JL. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi. Mater Charact 2016;119:148–51. doi: http://dx.doi.org/10.1016/j.matchar.2016.08.001.
DOI: 10.1016/j.matchar.2016.08.001
Google Scholar
[22]
Mehrpouya, Mehrshad & Gisario, Annamaria & Rahimzadeh, Atabak & Huang, Hui & Elahinia, Mohammad. (2019). Numerical study for prediction of optimum operational parameters in laser welding of NiTi alloy. Optics & Laser Technology. 118. 159-169. 10.1016/j.optlastec.2019.05.010.
DOI: 10.1016/j.optlastec.2019.05.010
Google Scholar
[23]
Mehrpouya, M., Gisario, A., Broggiato, G.B. et al. Effect of welding parameters on functionality of dissimilar laser-welded NiTi superelastic (SE) to shape memory effect (SME) wires. Int J Adv Manuf Technol 103, 1593–1601 (2019). https://doi.org/10.1007/s00170-019-03514-7.
DOI: 10.1007/s00170-019-03514-7
Google Scholar
[24]
Corneliu Crăciunescu and Ion Mitelea, Combined Effects in Quasidisimilar NiTi Joints Manufactured by Pulsed Laser Welding, Materials Science & Engineering A, https://doi.org/10.1016/j.msea.2018.09.014.
DOI: 10.1016/j.msea.2018.09.014
Google Scholar
[25]
Vâlsan, Dragos-Dumitru & Bolocan, Vlad & Novac, Andrei & Chilinicean, Gheorghe. (2021). NiTi wires welding using a 500 W pulsed Nd:YAG laser equipment. Materials Today: Proceedings. 45.
DOI: 10.1016/j.matpr.2020.12.043
Google Scholar
[26]
Khan MI, Pequegnat A, Zhou YN. Multiple Memory Shape Memory Alloys. Adv Eng Mater 2013;15:386–93.
DOI: 10.1002/adem.201200246
Google Scholar
[27]
Yan XJ, Yang DZ. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids. J Biomed Mater Res - Part A 2006;77:97–102.
DOI: 10.1002/jbm.a.30378
Google Scholar
[28]
Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458.
DOI: 10.1016/j.actamat.2010.02.019
Google Scholar
[29]
Deepan Bharathi Kannan T., Sathiya P., Ramesh T., Experimental investigation and characterization of laser welded NiTinol shape memory alloys, Journal of Manufacturing Processes, Volume 25, 2017, Pages 253-261, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2016.12.006.
DOI: 10.1016/j.jmapro.2016.12.006
Google Scholar
[30]
Zhang, Y., Xu, X., 2020. Transformation Temperature Predictions Through Computational Intelligence for NiTi-Based Shape Memory Alloys. Shape Mem. Superelasticity 6, 374–386. https://doi.org/10.1007/s40830-020-00303-0.
DOI: 10.1007/s40830-020-00303-0
Google Scholar
[31]
Wang FE, Buehler WJ, Pickart SJ (1965) Crystal Structure and a Unique 'Martensitic Transition of TiNi',. J Appl Phys 36(10):3232–3239.
DOI: 10.1063/1.1702955
Google Scholar
[32]
S. Miyazaki and K. Otsuka, Deformation and Transition Behavior Associated with the R-Phase in Ti-Ni Alloys,, Metallurgical Transactions A, vol. 17, pp.53-63, (1986).
DOI: 10.1007/bf02644442
Google Scholar
[33]
P. K. Kumar and D. C. Lagoudas, Introduction to Shape Memory Alloys, Shape Memory Alloys Modeling and Engineering Applications, Springer-Verlag US 2008, volume 1, pages 1-51. https://doi.org/10.1007/978-0-387-47685-8.
DOI: 10.1007/978-0-387-47685-8_1
Google Scholar