Green Synthesis of Fe3O4/TiO2 Nanoparticles Using Extracts of Moringa oleifera: Microstructural and Optical Properties

Article Preview

Abstract:

Fe3O4 and Fe3O4/TiO2 magnetic nanoparticles have been successfully prepared using an eco-friendly green synthesis method with various Moringa Oleifera (MO) extract concentrations. The X-ray diffraction and transmission electron microscopy results confirmed that the microstructure of Fe3O4 nanoparticles is a cubic inverse spinel structure with an average particle size of 9.2–11.7 nm and lattice parameters is in the range of 8.14–13.60 Å and the MO did not change the morphological structure of Fe3O4. Fourier-transform infrared showed that the samples had magnetic particles vibration peaks at 632 cm-1 and 570 cm-1, 500–700 cm-1 for Ti-O peaks, and 1047 cm-1 for aromatic C-C indicating green synthesis. Furthermore, the results of UV-VIS data presented the absorption edges of Fe3O4, Fe3O4-MO, and Fe3O4/TiO2-MO were 187.9 nm, 198.7 nm, and 197.1 nm, respectively. The bandgap energy of Fe3O4-MO is in the range of 2.62–2.66 eV and the bandgap energy of Fe3O4/TiO2-MO is 2.76 eV which explains that it depends on the bioactive compounds. Based on these results, the green synthesis nanoparticles have the potential to be applied in the industrial sector, especially for photocatalyst applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 332)

Pages:

91-99

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Petcharoen and A. Sirivat: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol Vol. 177 (2012), p.421–427.

Google Scholar

[2] F. Almomani, R. Bhosale, M. Khraisheh, A. kumar, and T. Almomani: Appl. Surf. Sci Vol. 506 (2020), p.144924.

DOI: 10.1016/j.apsusc.2019.144924

Google Scholar

[3] J. Jose, R. Kumar, S. Harilal, G. Mathew, et al: Environ. Sci. Pollut. Res Vol. 27 (2020), p.19214–19225.

Google Scholar

[4] F. Sharifianjazi, M. Irani, A. Esmaeilkhanian, L. Bazli, et al: Mater. Sci. Eng. B Vol. 272 (2021), p.115358.

Google Scholar

[5] M. Anand: J. Magn. Magn. Mater Vol. 522 (2021), p.167538.

Google Scholar

[6] S. Karimi and H. Namazi: J. Alloys Compd Vol. 879 (2021), p.160426.

Google Scholar

[7] W. Cai, M. Guo, X. Weng, W. Zhang, G. Owens, and Z. Chen: Mater. Sci. Eng. C Vol. 112, (2020), p.110900.

Google Scholar

[8] H. Liang, J. Guo, Y. Shi, G. Zhao, S. Sun, and X. Sun: Biomaterials Vol. 268 (2021), p.120530.

Google Scholar

[9] D. Liu, J. Li, C. Wang, L. An, J. Lin, Q. Tiang, and S. Yang: Nanomedicine Nanotechnology, Biol. Med Vol. 32 (2021), p.102335.

Google Scholar

[10] N. A. Wibowo, J. Juharni, T. Alfansuri, L. S. Handriani, H. Sabarman, and E. Suharyadi: Mater. Res. Express Vol. 7 (2020), p.126102.

DOI: 10.1088/2053-1591/abce87

Google Scholar

[11] Z. Yingzhe, H. Yuxing, Q. Qingdong, W. Fuchun, W. Wankun, and L. Yongmei: Superlattices Microstruct Vol. 118 (2018), p.123–129.

DOI: 10.1016/j.spmi.2018.04.016

Google Scholar

[12] S. Ni, S. Lin, Q. Pan, F. Yang, K. Huang, and D. He: J. Phys. D. Appl. Phys Vol. 42 (2009), p.055004.

Google Scholar

[13] J. Juharni, I. Maulana, E. Suharyadi, T. Kato, and S. Iwata: Key Eng. Mater Vol. 884 (2021), p.337–341.

Google Scholar

[14] M. A. Dheyab, A. A. Aziz, M. S. Jameel, P. M. Khaniabadi, and B. Mehrdel: Ultrason. Sonochem Vol. 64 (2020), p.104865.

Google Scholar

[15] M. R. Bindhu, M. Umadevi, G. A. Esmail, N. A. Al-Dhabi, and M. V. Arasu: J. Photochem. Photobiol. B Biol Vol. 205 (2020), p.111836.

Google Scholar

[16] P. E. Das, I. A. Abu‐Yousef, A. F. Majdalawieh, S. Narasimhan, and P. Poltronieri: Molecules Vol. 25 (2020), p.030555.

Google Scholar

[17] C. Prasad, K. Sreenivasulu, S. Gangadhara, and P. Venkateswarlu: J. Alloys Compd Vol. 700 (2017), p.252–258.

Google Scholar

[18] M. M. Kgatitsoe, S. Ncube, H. Tutu, I. A. Nyambe, and L. Chimuka: J. Environ. Chem. Eng Vol. 7 (2019), p.103128.

Google Scholar

[19] F. Adam, A Himawan, M Aswad, S Ilyas, Heryanto, M. Anugrah, and D Tahir: J. Phys. Conf. Ser Vol. 1763 (2021), p.012002.

DOI: 10.1088/1742-6596/1763/1/012002

Google Scholar

[20] I. Ngom, B. D. Ngom, J. Sackey, and S. Khamlich: Mater. Today Proc Vol. 36 (2020), pp.526-533.

DOI: 10.1016/j.matpr.2020.05.323

Google Scholar

[21] K. T. Mahmood, T. Mugal, and I. U. Haq: J. Pharm. Sci. Res Vol. 2 (2010), p.775–781.

Google Scholar

[22] H. M. Mehwish, M. S. R. Rajoka, Y. Xiong, H. Cai, et al: J. Environ. Chem. Eng Vol. 9 (2021), p.105290.

Google Scholar

[23] Gupta, P., & Rathore, V: Materials Today: Proceedings Vol 42 (2020), p.1345–1352.

Google Scholar

[24] Nyamukamba, P., Okoh, O., Mungondori, H., Taziwa, R., & Zinya, S: Material for a Sustainable Environment Vol.8 (2018), p.75425.

DOI: 10.5772/intechopen.75425

Google Scholar

[25] J. M. Abisharani, S. Devikala, R. Dinesh Kumar, M. Arthanareeswari, and P. Kamaraj: Mater. Today Proc Vol. 14 (2020), p.302–307.

DOI: 10.1016/j.matpr.2019.04.151

Google Scholar

[26] G. Nabi, W. Raza, and M. B. Tahir: J. Inorg. Organomet. Polym. Mater Vol. 30 (2020), p.1425–1429.

Google Scholar

[27] U. M. Garusinghe, V. S. Raghuwanshi, W. Batchelor, and G. Garnier: Sci. Rep Vol. 8 (2018), p.1–13.

Google Scholar

[28] K. Nakata and A. Fujishima: J. Photochem. Photobiol. C Photochem. Rev Vol. 13 (2012), p.169–189.

Google Scholar

[29] S. Higashimoto: Catalysts Vol. 9 (2019), p.020201.

Google Scholar

[30] W. Chakhari, J. Ben Naceur, S. Ben Taieb, I. Ben Assaker, and R. Chtourou: J. Alloys Compd Vol. 708 (2017), p.862–870.

DOI: 10.1016/j.jallcom.2016.12.181

Google Scholar

[31] Maulidiyah, T. Azis, A. T. Nurwahidah, D. Wibowo, and M. Nurdin: Environ. Nanotechnology, Monit. Manag Vol. 8 (2017), p.103–111.

Google Scholar

[32] Q. Wang, R. Jin, M. Zhang, and S. Gao: J. Alloys Compd Vol. 690 (2017), p.139–144.

Google Scholar

[33] L. Pan, M. Ai, C. Huang, L. Yin et al: Nat. Commun Vol. 11 (2020), p.418.

Google Scholar

[34] K. P. Gopinath, N. V. Madhav, A. Krishnan, R. Malolan, and G. Rangarajan: J. Environ. Manage Vol. 270 (2020), p.110906.

Google Scholar

[35] A. H. Mamaghani, F. Haghighat, and C. S. Lee: Appl. Catal. B Environ Vol. 269 (2020), p.118735.

Google Scholar

[36] H. A. Kiwaan, T. M. Atwee, E. A. Azab, and A. A. El-Bindary: J. Mol. Struct Vol. 1200 (2020), p.127115.

DOI: 10.1016/j.molstruc.2019.127115

Google Scholar

[37] B. Niu, X. Wang, K. Wu, X. He, and R. Zhang: Materials (Basel) Vol. 11 (2018), p.1–23.

Google Scholar

[38] D. Beketova, M. Motola, H. Sopha, J. Michalicka, et al: ACS Appl. Nano Mater Vol. 3 (2020), p.1553–1563.

Google Scholar

[39] A. Kalam, A. G. Al-Sehemi, M. Assiri, et al: Results Phys Vol. 8 (2018), p.1046–1053.

Google Scholar

[40] M. A. Marsooli, M. F. Ramandi, K. Adib, S. Pourmasoud, et al: Materials (Basel) Vol. 12 (2019), p.1–18.

Google Scholar

[41] X. Lin, S. Wang, W. Tu, H. Wang, et al: ACS Appl. Energy Mater Vol. 2 (2019), p.7670–7678.

Google Scholar

[42] T. Wang, Z. Jiang, T. An, G. Li, H. Zhao, and P. K. Wong: Environ. Sci. Technol Vol. 52 (2018), p.4774–4784.

Google Scholar

[43] D. Wang, D. Han, J. Yang, J. Wang, X. Li, and H. Song: Powder Technol Vol. 327 (2018), p.489–499.

Google Scholar

[44] K. Atrak, A. Ramazani, and S. Taghavi Fardood: J. Photochem. Photobiol. A Chem Vol. 382 (2019), p.111942.

Google Scholar

[45] M. Khodadadi, T. J. Al-Musawi, H. Kamani, M. F. Silva, and A. H. Panahi: Chemosphere Vol. 239 (2020), p.124723.

DOI: 10.1016/j.chemosphere.2019.124723

Google Scholar

[46] E. Suharyadi, A.Muzakki, A. Nofrianti, N. I. Istiqomah, T. Kato, and S. Iwata: Mater. Res. Express Vol.7 (2020), p.085013.

DOI: 10.1088/2053-1591/abafd1

Google Scholar

[47] N. I. Istiqomah, A. T. Muzakki, A. Nofrianti, E. Suharyadi, T. Kato, and S. Iwata: Key Eng. Mater Vol. 855 (2020), p.268–273.

DOI: 10.4028/www.scientific.net/kem.855.268

Google Scholar

[48] N. Matinise, X. G. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza: Appl. Surf. Sci Vol. 406 (2017), p.339–347.

DOI: 10.1016/j.apsusc.2017.01.219

Google Scholar

[49] A. H. Kianfar and M. A. Arayesh: J. Environ. Chem. Eng Vol. 8 (2020), p.103640.

Google Scholar

[50] I I. S. Budi, I. Kartini, and E. S. Kunarti: Key Eng. Mater Vol. 840 (2020), p.79–83.

Google Scholar

[51] V. Nikolić, M. Milić, S. Jovanović, and V. Girman: Sci. Tech. Rev Vol. 67 (2017), p.20–26.

Google Scholar

[52] S. Khashan, S. Dagher, N. Tit, A. Alazzam, and I. Obaidat: Surf. Coatings Technol Vol. 322 (2017), p.92–98.

DOI: 10.1016/j.surfcoat.2017.05.045

Google Scholar

[53] Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, and P. R. Solanki: J. Environ. Chem. Eng Vol. 4 (2016), p.4237–4247.

Google Scholar

[54] K. Thamaphat, P. Limsuwan, and B. Ngotawornchai: Kasetsart J.(Nat. Sci.) Vol. 42 (2008), p.357–361.

Google Scholar

[55] A. Shabani, G. Nabiyouni, J. Saffari, and D. Ghanbari: J. Mater. Sci. Mater. Electron Vol. 27 (2016), p.8661–8669.

DOI: 10.1007/s10854-016-4887-5

Google Scholar

[56] H. El Ghandoor, H. M. Zidan, M. M. H. Khalil, and M. I. M. Ismail: Int. J. Electrochem. Sci., Vol. 7 (2012), p.5734–5745.

Google Scholar

[57] L. Zheng, W. Su, Z. Qi, Y. Xu, M. Zhou, and Y. Xie: Nanotechnology Vol. 22 (2011), p.485706.

Google Scholar

[58] M. Abbas, B. Parvatheeswara Rao, V. Reddy, and C. Kim: Ceram. Int Vol. 40 (2014), p.11177–11186.

Google Scholar

[59] K. Tedsree, N. Temnuch, N. Sriplai, and S. Pinitsoontorn: Mater. Today Proc Vol. 4 (2017), p.6576–6584.

DOI: 10.1016/j.matpr.2017.06.170

Google Scholar