Effect of Sintering Temperature on the Properties of Calcia-Stabilized Zirconia (Ca-SZ) Bioceramics

Article Preview

Abstract:

This paper highlights the study on effect of sintering temperature on the morphologies and compressive strength of zirconia ceramics doped with calcium oxide (CaO) as stabiliser to enhance the zirconia structure undergo sudden phase transformation. CaO reportedly has good stability in cubic phase at all temperature, which open up a new possibility for new material to evolve for zirconia ceramic dental application. CaO synthesis from calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) is used as metal precursor to produce Calcia-Sabilized Zirconia (Ca-SZ). 8 wt. % of Ca(NO3)2.4H2O and 92 wt. % of zirconium oxide (ZrO2) mixed and stirred together with ethanol as solvent and sintered at temperatures 1200, 1300 and 1400°C. Surface morphologies are investigated by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) element analysis, X-ray Diffraction (XRD) for composition studies, as well as compressive strength to figure out the mechanical properties of Ca-SZ sample. Increment in sintering temperature enhance the surface morphologies, the phase of Ca-SZ become intensified and transformed from monoclinic to tetragonal ZrO2 also flexural strength increases as well. The compressive strength recorded the highest value of 4537 MPa for Ca-SZ at temperature of 1400°C. The optimal temperature of Ca-SZ suitable for dental application was 1400°C due to the good morphologies and mechanical properties suitable for teeth restoration. The development of Ca-SZ can establish a pathway as an alternative material for dental applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 337)

Pages:

55-63

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Alfawaz, Zirconia crown as single unit tooth restoration: A literature review, Journal of Contemporary Dental Practice, 17(5), (2016) 418–422.

DOI: 10.5005/jp-journals-10024-1865

Google Scholar

[2] B. Stawarczyk, A. Emslander, M. Roos, B. Sener, F. Noack, C. Keul, Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters, Dental Materials Journal, 33(5), (2014) 591–598.

DOI: 10.4012/dmj.2014-056

Google Scholar

[3] S. Saridag, O. Tak, G. Alniacik, Basic properties and types of zirconia: An overview, World Journal of Stomatology, 2(3), (2013) 40-47.

DOI: 10.5321/wjs.v2.i3.40

Google Scholar

[4] T. Kosmač, A. Kocjan, Ageing of dental zirconia ceramics, Journal of the European Ceramic Society, 32 (11), (2012) 2613–2622.

DOI: 10.1016/j.jeurceramsoc.2012.02.024

Google Scholar

[5] I. Denry, J. R. Kelly, State of the art of zirconia for dental applications, Dental Materials, 24(3), (2008) 299–307.

DOI: 10.1016/j.dental.2007.05.007

Google Scholar

[6] C. Gautam, J. Joyner, A. Gautam, J. Rao, R. Vajtai, Zirconia based dental ceramic: structure, mechanical properties, biocompatibility and applications, Dalton Transactions, 45(48), (2016) 19194-19215.

DOI: 10.1039/c6dt03484e

Google Scholar

[7] S. K. Durrani, J. Akhtar, M. Ahmad, M. A. Hussain, Synthesis and characterization of low density calcia stabilized zirconia ceramic for high temperature furnace application, Materials Chemistry and Physics, 100 (2–3), (2006) 324–328.

DOI: 10.1016/j.matchemphys.2006.01.010

Google Scholar

[8] S. M. Dizaj, M. Barzegar-Jalali, M. Hossein Zarrintan, K. Adibkia, F. Lotfipour, Calcium carbonate nanoparticles; Potential in bone and tooth disorders, Pharmaceutical Sciences, 20(4), (2015) 175–182.

DOI: 10.1517/17425247.2015.1049530

Google Scholar

[9] A. S. Al-Chalabi, M. Chakmakchi, A. A. Taqa, Effect of Nano Calcium Oxide Intra Canal Medicaments on the Sealing Integrity of Root Canal Treated Teeth, EC Dental Science, 7 (2019) 1369–1377.

Google Scholar

[10] A. I. Hussein, A. N. C. Mat, N. A. A. Abd Wahab, I. Ab. Rahman, A. Husein, Z. Ab-Ghani, Synthesis and properties of novel calcia-stabilized zirconia (Ca-SZ) with nano calcium oxide derived from cockle shells and commercial source for dental application, Applied Sciences (Switzerland), 10(17). (2020) 1-13.

DOI: 10.3390/app10175751

Google Scholar

[11] A. Gionea, E. Andronescu, G. Voicu, C. Bleotu, & V. A. Surdu, Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties, International Journal of Pharmaceutics, 510(2), (2016) 439–448.

DOI: 10.1016/j.ijpharm.2015.10.044

Google Scholar

[12] N. A. A. Ghani, Z. Ab-Ghani, Y. M. B. Ismail, K. A. Shariff, A. N. C. Mat, Z. Ariffin, T. Liszen, A. F. M. Noor, Non-aqueous sol-gel derived calcia partially stabilized zirconia: synthesis and characterization, Malaysia Journal of Microscopy, 16(1), (2020) 67-74.

Google Scholar

[13] M. M. Uz, A. K. Aydinoğlu, A. B. H. Yoruç, Effects of binder and compression strength on molding parameters of dental ceramic blocks, Ceramics International, 46(8), (2020) 10186-10193.

DOI: 10.1016/j.ceramint.2020.01.010

Google Scholar

[14] L. Jiang, Y. Liao, Q. Wan, W. Li, Effects of sintering temperature and particle size on translucency of zirconium dioxide dental ceramic, Journal of Materials Science: Materials in Medicine, 22(11), (2011) 2429-2435.

DOI: 10.1007/s10856-011-4438-9

Google Scholar

[15] L. Gharibshahi, E. Saion, E. Gharibshahi, A. H. Shaari, K. A. Matori, Structural and optical properties of ag nanoparticles synthesized by thermal treatment method. Materials, 10(4), (2017) 402.

DOI: 10.3390/ma10040402

Google Scholar

[16] R. Yogamalar, S. Anitha, R. Srinivasan, A. Vinu, K. Ariga, A. C. Bose, An investigation on co-precipitation derived ZnO nanospheres, Journal of Nanoscience and Nanotechnology, 9(10), (2009) 5966–5972.

DOI: 10.1166/jnn.2009.1289

Google Scholar

[17] F. Chen, J. M. Wu, H. Q. Wu, Y. Chen, C. H. Li, Y. S. Shi, Microstructure and mechanical properties of 3Y-TZP dental ceramics fabricated by selective laser sintering combined with cold isostatic pressing, International Journal of Lightweight Materials and Manufacture, 1(4), (2018) 239–245.

DOI: 10.1016/j.ijlmm.2018.09.002

Google Scholar

[18] J. Fan, T. Lin, F. Hu, Y. Yu, M. Ibrahim, R. Zheng, J. Ma, Effect of sintering temperature on microstructure and mechanical properties of zirconia-toughened alumina machinable dental ceramics, Ceramics International, 43(4), (2017) 3647–3653.

DOI: 10.1016/j.ceramint.2016.11.204

Google Scholar

[19] I. Yakub, J. Du, & W. O. Soboyejo, Mechanical properties, modelling and design of porous clay ceramics, Materials Science and Engineering A, 558, (2012) 21–29.

DOI: 10.1016/j.msea.2012.07.038

Google Scholar

[20] K. J. Chun, J. Y. Lee, Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads, Journal of Dental Biomechanics, 5 (2014) 0–5.

DOI: 10.1177/1758736014555246

Google Scholar

[21] L. Zhao, S. Yao, J. Du, Modification effect of nanometre zirconia on Ca-PSZ Ceramics, Materials Science Forum, 953 (2019) 59-64.

DOI: 10.4028/www.scientific.net/msf.953.59

Google Scholar