[1]
R. van Noort, The future of dental devices is digital, Dent. Mater. 28 (2012) 3–12.
Google Scholar
[2]
A.J. Sánchez Egea, V. Martynenko, D. Martínez Krahmer, L.N. López de Lacalle, A. Benítez, G. Genovese, On the cutting performance of segmented diamond blades when dry-cutting concrete, Materials 11 (2018) 264.
DOI: 10.3390/ma11020264
Google Scholar
[3]
X. Han, T. Sawada, C. Schille, E. Schweizer, L. Scheideler, J. Geis-Gerstorfer, F. Rupp, S. Spintzyk, Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes, Materials (Basel) 22 (2018) 1801.
DOI: 10.3390/ma11101801
Google Scholar
[4]
L.N Khanlar, A.S. Rios, A. Tahmaseb, A. Zandinejad, Additive manufacturing of zirconia ceramic and its application in clinical dentistry: a review, Dent J (Basel) 9 (2021) PMC8469515.
DOI: 10.3390/dj9090104
Google Scholar
[5]
ISO/ASTM, 17296 Standard on Additive Manufacturing (AM) Technologies.
Google Scholar
[6]
J.R. Strub, E.D. Rekow, S. Witkowski, Computer-aided design and fabrication of dental restorations, J. Am. Dent. Assoc. 137 (2006) 1289–1296.
DOI: 10.14219/jada.archive.2006.0389
Google Scholar
[7]
J. Deckers, J. Vleugels, J.P. Kruth, Additive manufacturing of ceramics: A review, J. Ceram. Sci. Technol. 5 (2014) 245–260.
Google Scholar
[8]
T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, M.A. Rifaiy, Y.S. Al Jabbari, Selective laser melting technique of Co–Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques, J. Prosthodont. 24 (2015) 303–312.
DOI: 10.1111/jopr.12268
Google Scholar
[9]
Y.S. Al Jabbari, X. Barmpagadaki, I. Psarris, S. Zinelis, Microstructural, mechanical, ionic release and tarnish resistance characterization of porcelain fused to metal Co–Cr alloys manufactured via casting and three different CAD/CAM techniques, J. Prosthodont. Res. 63(2) (2019) 150-156.
DOI: 10.1016/j.jpor.2018.10.008
Google Scholar
[10]
Y.S. Al Jabbari, T. Koutsoukis, X. Barmpagadaki, S. Zinelis, Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting, Dent. Mater. 30 (2014) e79-88.
DOI: 10.1016/j.dental.2014.01.008
Google Scholar
[11]
K. Dimitriadis, K. Spyrpoulos, T. Papadopoulos, Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique, J. Adv. Prosthodont. 10 (2018) 25-31.
DOI: 10.4047/jap.2018.10.1.25
Google Scholar
[12]
K. Dimitriadis, T. Papadopoulos, S. Agathopoulos, Effect of bonding agent on metal-ceramic bond strength between Co-Cr, fabricated with selective laser melting and dental feldspathic porcelain, J. Prosthodont. 28 (2019) 1029-1036.
DOI: 10.1111/jopr.13058
Google Scholar
[13]
K. Dimitriadis, A.G. Lekatou, A. Sfikas, M. Roumpi, S. Tsouli, A. Galiatsatos, S. Agathopoulos, Influence of heat-treatment cycles on microstructure, mechanical properties, and corrosion resistance of Co-Cr dental alloys fabricated by selective-laser-melting, J. of Materi. Eng. and Perform. 30 (2021) 5252-5265.
DOI: 10.1007/s11665-021-05738-9
Google Scholar
[14]
B. Qian, Z. Shen, Laser sintering of ceramics, Journal of Asian Ceramic Societies 1 (2013) 315–321.
DOI: 10.1016/j.jascer.2013.08.004
Google Scholar
[15]
J. Liu, B. Zhang, C. Yan, Y. Shi, The effect of processing parameters on characteristics of selective laser sintering dental glass‐ceramic powder, Rapid Prototyp. J. 16 (2010) 138-145.
DOI: 10.1108/13552541011025861
Google Scholar
[16]
K. Shahzad, J. Deckers, S. Boury, B. Neirinck, J.P. Kruth, J. Vleugels, Preparation and indirect selective laser sintering of alumina/PA microspheres. Ceram. Int. 38 (2012) 1241-1247.
DOI: 10.1016/j.ceramint.2011.08.055
Google Scholar
[17]
M.M. Methani, P.F. Cesar, R.B. de Paula Miranda, S. Morimoto, M. Özcan, M. Revilla-León, Additive manufacturing in Dentistry: current technologies, clinical applications, and limitations, Curr. Oral Health Rep. 7 (2020) 327–334.
DOI: 10.1007/s40496-020-00288-w
Google Scholar
[18]
F. Chen, J.M. Wu, H.Q. Wu, Y. Chen, C.H. Li, Y.S. Shi, Microstructure and mechanical properties of 3Y-TZP dental ceramics fabricated by selective laser sintering combined with cold isostatic pressing, International Journal of Lightweight Materials and Manufacture 1 (2018) 239-245.
DOI: 10.1016/j.ijlmm.2018.09.002
Google Scholar
[19]
M.M. Methani, M. Revilla-León, A. Zandinejad, The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review, J. Esthet. Restor. Dent. 32 (2020) 182–192.
DOI: 10.1111/jerd.12535
Google Scholar
[20]
K. Liu, Y.S. Shi, C.H. Li, L. Hao, J. Liu, Q.S. Wei, Indirect selective laser sintering of epoxy resin-Al2O3 ceramic powders combined with cold isostatic pressing, Ceram. Int. 40 (2014) 7099-7106.
DOI: 10.1016/j.ceramint.2013.12.043
Google Scholar
[21]
K.C.R. Kolan, M.C. Leu, G.E. Hilmas, M. Velez, Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering, J. Mech. Behav. Biomed. Mater. 13 (2012) 14-24.
DOI: 10.1016/j.jmbbm.2012.04.001
Google Scholar
[22]
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2 (2015) 041101.
DOI: 10.1063/1.4935926
Google Scholar
[23]
X. Zhang, X. Wu, J. Shi, Additive manufacturing of zirconia ceramics: a state-of-the-art review. J. Marer. Res. Technol. 9 (2020) 9029-9048.
Google Scholar
[24]
Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review, J. Eur. Ceram. Soc. 39 (2019) 661–687.
DOI: 10.1016/j.jeurceramsoc.2018.11.013
Google Scholar
[25]
P. Bertrand, F. Bayle, C. Combe, P. Goeuriot, I. Smurov, Ceramic components manufacturing by selective laser sintering, Appl. Surf. Sci. 254 (2007) 989–992.
DOI: 10.1016/j.apsusc.2007.08.085
Google Scholar
[26]
G.A. Fielding, A. Bandyopadhyay, S. Bose, Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds, Dent. Mater. 28 (2012) 113–122.
DOI: 10.1016/j.dental.2011.09.010
Google Scholar
[27]
B. Nan, X. Yin, L. Zhang, L. Cheng, Three‐dimensional printing of Ti3SiC2‐based ceramics, J. of the Amer. Ceram. Soc. 94 (2011) 969–972.
DOI: 10.1111/j.1551-2916.2010.04257.x
Google Scholar
[28]
Y.S. Al Jabbari, Physico-mechanical properties, and prosthodontic applications of Co-Cr dental alloys: a review of the literature, J. Adv. Prosthodont. 6 (2014) 138–145.
DOI: 10.4047/jap.2014.6.2.138
Google Scholar
[29]
R. Castillo-Oyague, R. Osorio, E. Osorio, F. Sanchez-Aguilera, and M. Toledano, The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks, Microsc. Res. Tech. 75 (2012) 1206-1212.
DOI: 10.1002/jemt.22050
Google Scholar
[30]
A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, and T. Hanawa, Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications, J. Mech. Behav. Biomed. Mater. 21 (2013) 67-76.
DOI: 10.1016/j.jmbbm.2013.01.021
Google Scholar
[31]
Y. Ucar, T. Akova, M.S. Akyil, W.A. Brantley, Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns, J. Prosthet. Dent. 102 (2009) 253-259.
DOI: 10.1016/s0022-3913(09)60165-7
Google Scholar
[32]
X.Z. Xin, J. Chen, N. Xiang, B. Wei, Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique, Cell Biochem. Biophys. 67 (2013) 983-990.
DOI: 10.1007/s12013-013-9593-9
Google Scholar
[33]
M. Revilla-Leon, M. Gomez-Polo, S.H. Park, B.A. Barmak, M. Özcan M, Adhesion of veneering porcelain to cobalt-chromium dental alloys processed with casting, milling, and additive manufacturing methods: A systematic review and meta-analysis, J. Prosthet. Dent. 19 (2021) S0022-3913(21)00029-9.
DOI: 10.1016/j.prosdent.2021.01.001
Google Scholar
[34]
J. Li, C. Chen, J. Liao, L. Liu, X. Ye, S. Lin, J. Ye, Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting, J. Prosthet. Dent. 118 (2017) 69-75.
DOI: 10.1016/j.prosdent.2016.11.001
Google Scholar
[35]
R. Castillo-Oyague, C.D. Lynch, A.S. Turrion, J.F. Lopez-Lozano, D. Tores-Lagares, M.J. Suarez-Garcia, Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents, J. Dent. 41 (2013) 90-96.
DOI: 10.1016/j.jdent.2012.09.014
Google Scholar
[36]
Z. Huang, L. Zhang, J. Zhu, X. Zhang, Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology, J. Prosthet. Dent. 113 (2015) 623-627.
DOI: 10.1016/j.prosdent.2014.10.012
Google Scholar
[37]
L. Wu, H. Zhu, X. Gai, Y. Wang, Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting, J. Prosthet. Dent. 111 (2014) 51-55.
DOI: 10.1016/j.prosdent.2013.09.011
Google Scholar
[38]
A. Mazzoli, Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput. 51 (2013) 245–256.
DOI: 10.1007/s11517-012-1001-x
Google Scholar
[39]
K. Shahzad, J. Deckers, Z. Zhang, J.P. Kruth, J. Vleugels, Additive manufacturing of zirconia parts by indirect selective laser sintering. J. Eur. Ceram. Soc. 34 (2014) 81–89.
DOI: 10.1016/j.jeurceramsoc.2013.07.023
Google Scholar
[40]
M.C. Tanzi, S. Farè, G. Candiani, Biomaterials and Applications, in: M.C. Tanzi, S. Farè, G. Candiani (Eds.), Foundations of Biomaterials Engineering, Elsevier, Philadelphia, 2019, pp.199-287.
DOI: 10.1016/b978-0-08-101034-1.00004-9
Google Scholar
[41]
N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16 (2014) 729–754.
DOI: 10.1002/adem.201400097
Google Scholar
[42]
S. Agathopoulos, D.U. Tulyaganov, Bioglasses and glass-ceramics in the Na2O–CaO–MgO–SiO2–P2O5–CaF2 system, in: I. Antoniac (Eds.), Bioceramics and Biocomposites: From Research to Clinical Practice, Wiley, New York, 2019, p.123–148.
DOI: 10.1002/9781119372097.ch6
Google Scholar
[43]
K. Dimitriadis, D. Moschovas, D.U. Tulyaganov, S. Agathopoulos, Development of novel bioactive glass-ceramics in the Na2O/K2O-CaO-MgO-SiO2-P2O5-CaF2 system, J. Non-Cryst. Solids 533 (2020).
DOI: 10.1016/j.jnoncrysol.2020.119936
Google Scholar
[44]
K. Dimitriadis, K.C. Vasilopoulos, T.C. Vaimakis, M.A. Karakassides, D.U. Tulyaganov, S. Agathopoulos, Synthesis of glass-ceramics in the Na2O/K2O-CaO-MgO-SiO2-P2O5-CaF2 system as candidate materials for dental applications, Int. J. Appl. Ceram. Technol. 17 (2020) 2025–(2035).
DOI: 10.1111/ijac.13509
Google Scholar
[45]
K. Dimitriadis, D.U. Tulyaganov, S. Agathopoulos, Development of novel alumina-containing bioactive glass-ceramics in the CaO-MgO-SiO2 system as candidates for dental implant applications, J. Eur. Ceram. Soc. 41 (2021) 929–940.
DOI: 10.1016/j.jeurceramsoc.2020.08.005
Google Scholar
[46]
K. Dimitriadis, D. Moschovas, D.U. Tulyaganov, S. Agathopoulos, Glass-ceramics in the CaO–MgO–Al2O3–SiO2 system as potential dental restorative materials, Int. J. Appl. Ceram. Technol. 18 (2021) 1938–(1949).
DOI: 10.1111/ijac.13836
Google Scholar
[47]
K. Dimitriadis, D.U. Tulyaganov, K.C. Vasilopoulos, M.A. Karakassides, S. Agathopoulos, Influence of K and Mg substitutions on the synthesis and the properties of CaO-MgO-SiO2/Na2O, P2O5, CaF2 bioactive glasses, J. Non-Cryst. Solids 573 (2021) 121140.
DOI: 10.1016/j.jnoncrysol.2021.121140
Google Scholar
[48]
M. Montazerian, E.D. Zanotto, History and trends of bioactive glass-ceramics, J. Biomed. Mater. Res. Part A 104 (2016) 1231-1249.
DOI: 10.1002/jbm.a.35639
Google Scholar
[49]
M. Montazerian, E.D. Zanotto, Bioactive and inert dental glass-ceramics, Biomed. Mater. Res. A 105 (2017) 619-639.
DOI: 10.1002/jbm.a.35923
Google Scholar
[50]
S.A. Saadaldin, S.J. Dixon, D.O. Costa, A.S. Rizkalla, Synthesis of bioactive and machinable miserite glass-ceramics for dental implant applications, Dent. Mater. 29 (2013) 645–655.
DOI: 10.1016/j.dental.2013.03.013
Google Scholar
[51]
S.A. Saadaldin, A.S. Rizkalla, Synthesis and characterization of wollastonite glass–ceramics for dental implant applications, Dent. Mater. 30 (2014) 364–371.
DOI: 10.1016/j.dental.2013.12.007
Google Scholar
[52]
S.A. Saadaldin, S.J. Dixon, A.S. Rizkalla, Bioactivity and biocompatibility of a novel wollastonite glass-ceramic biomaterial, J. Biomater. Tissue Eng. 4 (2014) 939-946.
DOI: 10.1166/jbt.2014.1261
Google Scholar
[53]
F. Baino, E. Verné, Production and characterization of glass-ceramic materials for potential use in dental applications: thermal and mechanical properties, microstructure, and in vitro bioactivity, Appl. Sci. 7 (2017) 1-16.
DOI: 10.3390/app7121330
Google Scholar
[54]
X. Chen, X. Liao, Z. Huang, P. You, C. Chen, Y. Kang, G. Yin, Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system, J. Biomed. Mater. Res. B Appl. Biomater. 93 (2010) 194-202.
DOI: 10.1002/jbm.b.31574
Google Scholar
[55]
J.W. McLean, Evolution of dental ceramics in the twentieth century, J. Prosthet. Dent. 85 (2001) 61-66.
Google Scholar
[56]
R.D. Goodridge, C. Ohtsuki, M. Kamitakahara, D.J. Wood, K.W. Dalgarno, Fabrication of bioactive glass-ceramics by Selective Laser Sintering, Key Engineering Materials 309-311 (2006) 289-292.
DOI: 10.4028/www.scientific.net/kem.309-311.289
Google Scholar
[57]
M. Fateri, A. Gebhardt, S. Thuemmler, L. Thurn, Experimental investigation on selective laser melting of glass, Physics Procedia 56 (2014) 357-364.
DOI: 10.1016/j.phpro.2014.08.118
Google Scholar
[58]
T. Akova, Y. Ucar, A. Tukay, M.C. Balkaya, W.A. Brantley, Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain, Dent. Mater. 24 (2008) 1400-1404.
DOI: 10.1016/j.dental.2008.03.001
Google Scholar