Selective Laser Melting-Sintering Technology: From Dental Co-Cr Alloys to Dental Ceramic Materials

Article Preview

Abstract:

The general term of CAD/CAM technology (i.e., Computer-Aided Design/Compute-Aided Manufacturing) comprises several aspects, such as subtractive manufacturing processes, like milling (soft and hard milling), and additive manufacturing processes, like Selective Laser Melting (SLM), which refers to metallic materials, or Selective Laser Sintering (SLS), which refers to glasses/glass-ceramics/ceramic, or polymeric, or related composite materials produced via powder metallurgy technique. In biomaterials fabrications, the first step in SLM or SLS technology is the digital design of the prosthetic restoration, whereby the patient's individual anatomical and morphological features are precisely described. Afterwards laser-aided melting or sintering is repeated (layer-by-layer) until the complete restoration item is fabricated. A wide range of dental materials can be produced by SLM or SLS technology, e.g., metals and alloys, thermoplastic polymers, glasses/ceramics, waxes, and thermoplastic composites. Thus, it is a promising technology for producing a variety of dental restorations, such as metal-ceramic restorations, all-ceramic restorations, maxillofacial prostheses, functional skeletons, individual scaffolds for tissue engineering, etc. SLM technology is already widely applied for fabricating metal objects for dental (e.g., Co-Cr alloy) and orthopedic prostheses. As a subsequence, in the last decade, researchers' interest has been shifted to SLS of ceramic powders, such as SiO2, Al2O3, SiO2/Al2O3, and ZrO2/Y2O3. This article comprehensively reviews the SLS process and its prospects for producing glasses/glass-ceramic/ceramic materials for biomedical/dental applications. The experimental results clearly show that this very modern additive manufacturing technology does not jeopardize the properties of the ceramic biomaterials' properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 339)

Pages:

115-122

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. van Noort, The future of dental devices is digital, Dent. Mater. 28 (2012) 3–12.

Google Scholar

[2] A.J. Sánchez Egea, V. Martynenko, D. Martínez Krahmer, L.N. López de Lacalle, A. Benítez, G. Genovese, On the cutting performance of segmented diamond blades when dry-cutting concrete, Materials 11 (2018) 264.

DOI: 10.3390/ma11020264

Google Scholar

[3] X. Han, T. Sawada, C. Schille, E. Schweizer, L. Scheideler, J. Geis-Gerstorfer, F. Rupp, S. Spintzyk, Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes, Materials (Basel) 22 (2018) 1801.

DOI: 10.3390/ma11101801

Google Scholar

[4] L.N Khanlar, A.S. Rios, A. Tahmaseb, A. Zandinejad, Additive manufacturing of zirconia ceramic and its application in clinical dentistry: a review, Dent J (Basel) 9 (2021) PMC8469515.

DOI: 10.3390/dj9090104

Google Scholar

[5] ISO/ASTM, 17296 Standard on Additive Manufacturing (AM) Technologies.

Google Scholar

[6] J.R. Strub, E.D. Rekow, S. Witkowski, Computer-aided design and fabrication of dental restorations, J. Am. Dent. Assoc. 137 (2006) 1289–1296.

DOI: 10.14219/jada.archive.2006.0389

Google Scholar

[7] J. Deckers, J. Vleugels, J.P. Kruth, Additive manufacturing of ceramics: A review, J. Ceram. Sci. Technol. 5 (2014) 245–260.

Google Scholar

[8] T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, M.A. Rifaiy, Y.S. Al Jabbari, Selective laser melting technique of Co–Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques, J. Prosthodont. 24 (2015) 303–312.

DOI: 10.1111/jopr.12268

Google Scholar

[9] Y.S. Al Jabbari, X. Barmpagadaki, I. Psarris, S. Zinelis, Microstructural, mechanical, ionic release and tarnish resistance characterization of porcelain fused to metal Co–Cr alloys manufactured via casting and three different CAD/CAM techniques, J. Prosthodont. Res. 63(2) (2019) 150-156.

DOI: 10.1016/j.jpor.2018.10.008

Google Scholar

[10] Y.S. Al Jabbari, T. Koutsoukis, X. Barmpagadaki, S. Zinelis, Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting, Dent. Mater. 30 (2014) e79-88.

DOI: 10.1016/j.dental.2014.01.008

Google Scholar

[11] K. Dimitriadis, K. Spyrpoulos, T. Papadopoulos, Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique, J. Adv. Prosthodont. 10 (2018) 25-31.

DOI: 10.4047/jap.2018.10.1.25

Google Scholar

[12] K. Dimitriadis, T. Papadopoulos, S. Agathopoulos, Effect of bonding agent on metal-ceramic bond strength between Co-Cr, fabricated with selective laser melting and dental feldspathic porcelain, J. Prosthodont. 28 (2019) 1029-1036.

DOI: 10.1111/jopr.13058

Google Scholar

[13] K. Dimitriadis, A.G. Lekatou, A. Sfikas, M. Roumpi, S. Tsouli, A. Galiatsatos, S. Agathopoulos, Influence of heat-treatment cycles on microstructure, mechanical properties, and corrosion resistance of Co-Cr dental alloys fabricated by selective-laser-melting, J. of Materi. Eng. and Perform. 30 (2021) 5252-5265.

DOI: 10.1007/s11665-021-05738-9

Google Scholar

[14] B. Qian, Z. Shen, Laser sintering of ceramics, Journal of Asian Ceramic Societies 1 (2013) 315–321.

DOI: 10.1016/j.jascer.2013.08.004

Google Scholar

[15] J. Liu, B. Zhang, C. Yan, Y. Shi, The effect of processing parameters on characteristics of selective laser sintering dental glass‐ceramic powder, Rapid Prototyp. J. 16 (2010) 138-145.

DOI: 10.1108/13552541011025861

Google Scholar

[16] K. Shahzad, J. Deckers, S. Boury, B. Neirinck, J.P. Kruth, J. Vleugels, Preparation and indirect selective laser sintering of alumina/PA microspheres. Ceram. Int. 38 (2012) 1241-1247.

DOI: 10.1016/j.ceramint.2011.08.055

Google Scholar

[17] M.M. Methani, P.F. Cesar, R.B. de Paula Miranda, S. Morimoto, M. Özcan, M. Revilla-León, Additive manufacturing in Dentistry: current technologies, clinical applications, and limitations, Curr. Oral Health Rep. 7 (2020) 327–334.

DOI: 10.1007/s40496-020-00288-w

Google Scholar

[18] F. Chen, J.M. Wu, H.Q. Wu, Y. Chen, C.H. Li, Y.S. Shi, Microstructure and mechanical properties of 3Y-TZP dental ceramics fabricated by selective laser sintering combined with cold isostatic pressing, International Journal of Lightweight Materials and Manufacture 1 (2018) 239-245.

DOI: 10.1016/j.ijlmm.2018.09.002

Google Scholar

[19] M.M. Methani, M. Revilla-León, A. Zandinejad, The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review, J. Esthet. Restor. Dent. 32 (2020) 182–192.

DOI: 10.1111/jerd.12535

Google Scholar

[20] K. Liu, Y.S. Shi, C.H. Li, L. Hao, J. Liu, Q.S. Wei, Indirect selective laser sintering of epoxy resin-Al2O3 ceramic powders combined with cold isostatic pressing, Ceram. Int. 40 (2014) 7099-7106.

DOI: 10.1016/j.ceramint.2013.12.043

Google Scholar

[21] K.C.R. Kolan, M.C. Leu, G.E. Hilmas, M. Velez, Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering, J. Mech. Behav. Biomed. Mater. 13 (2012) 14-24.

DOI: 10.1016/j.jmbbm.2012.04.001

Google Scholar

[22] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2 (2015) 041101.

DOI: 10.1063/1.4935926

Google Scholar

[23] X. Zhang, X. Wu, J. Shi, Additive manufacturing of zirconia ceramics: a state-of-the-art review. J. Marer. Res. Technol. 9 (2020) 9029-9048.

Google Scholar

[24] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review, J. Eur. Ceram. Soc. 39 (2019) 661–687.

DOI: 10.1016/j.jeurceramsoc.2018.11.013

Google Scholar

[25] P. Bertrand, F. Bayle, C. Combe, P. Goeuriot, I. Smurov, Ceramic components manufacturing by selective laser sintering, Appl. Surf. Sci. 254 (2007) 989–992.

DOI: 10.1016/j.apsusc.2007.08.085

Google Scholar

[26] G.A. Fielding, A. Bandyopadhyay, S. Bose, Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds, Dent. Mater. 28 (2012) 113–122.

DOI: 10.1016/j.dental.2011.09.010

Google Scholar

[27] B. Nan, X. Yin, L. Zhang, L. Cheng, Three‐dimensional printing of Ti3SiC2‐based ceramics, J. of the Amer. Ceram. Soc. 94 (2011) 969–972.

DOI: 10.1111/j.1551-2916.2010.04257.x

Google Scholar

[28] Y.S. Al Jabbari, Physico-mechanical properties, and prosthodontic applications of Co-Cr dental alloys: a review of the literature, J. Adv. Prosthodont. 6 (2014) 138–145.

DOI: 10.4047/jap.2014.6.2.138

Google Scholar

[29] R. Castillo-Oyague, R. Osorio, E. Osorio, F. Sanchez-Aguilera, and M. Toledano, The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks, Microsc. Res. Tech. 75 (2012) 1206-1212.

DOI: 10.1002/jemt.22050

Google Scholar

[30] A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, and T. Hanawa, Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications, J. Mech. Behav. Biomed. Mater. 21 (2013) 67-76.

DOI: 10.1016/j.jmbbm.2013.01.021

Google Scholar

[31] Y. Ucar, T. Akova, M.S. Akyil, W.A. Brantley, Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns, J. Prosthet. Dent. 102 (2009) 253-259.

DOI: 10.1016/s0022-3913(09)60165-7

Google Scholar

[32] X.Z. Xin, J. Chen, N. Xiang, B. Wei, Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique, Cell Biochem. Biophys. 67 (2013) 983-990.

DOI: 10.1007/s12013-013-9593-9

Google Scholar

[33] M. Revilla-Leon, M. Gomez-Polo, S.H. Park, B.A. Barmak, M. Özcan M, Adhesion of veneering porcelain to cobalt-chromium dental alloys processed with casting, milling, and additive manufacturing methods: A systematic review and meta-analysis, J. Prosthet. Dent. 19 (2021) S0022-3913(21)00029-9.

DOI: 10.1016/j.prosdent.2021.01.001

Google Scholar

[34] J. Li, C. Chen, J. Liao, L. Liu, X. Ye, S. Lin, J. Ye, Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting, J. Prosthet. Dent. 118 (2017) 69-75.

DOI: 10.1016/j.prosdent.2016.11.001

Google Scholar

[35] R. Castillo-Oyague, C.D. Lynch, A.S. Turrion, J.F. Lopez-Lozano, D. Tores-Lagares, M.J. Suarez-Garcia, Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents, J. Dent. 41 (2013) 90-96.

DOI: 10.1016/j.jdent.2012.09.014

Google Scholar

[36] Z. Huang, L. Zhang, J. Zhu, X. Zhang, Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology, J. Prosthet. Dent. 113 (2015) 623-627.

DOI: 10.1016/j.prosdent.2014.10.012

Google Scholar

[37] L. Wu, H. Zhu, X. Gai, Y. Wang, Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting, J. Prosthet. Dent. 111 (2014) 51-55.

DOI: 10.1016/j.prosdent.2013.09.011

Google Scholar

[38] A. Mazzoli, Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput. 51 (2013) 245–256.

DOI: 10.1007/s11517-012-1001-x

Google Scholar

[39] K. Shahzad, J. Deckers, Z. Zhang, J.P. Kruth, J. Vleugels, Additive manufacturing of zirconia parts by indirect selective laser sintering. J. Eur. Ceram. Soc. 34 (2014) 81–89.

DOI: 10.1016/j.jeurceramsoc.2013.07.023

Google Scholar

[40] M.C. Tanzi, S. Farè, G. Candiani, Biomaterials and Applications, in: M.C. Tanzi, S. Farè, G. Candiani (Eds.), Foundations of Biomaterials Engineering, Elsevier, Philadelphia, 2019, pp.199-287.

DOI: 10.1016/b978-0-08-101034-1.00004-9

Google Scholar

[41] N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16 (2014) 729–754.

DOI: 10.1002/adem.201400097

Google Scholar

[42] S. Agathopoulos, D.U. Tulyaganov, Bioglasses and glass-ceramics in the Na2O–CaO–MgO–SiO2–P2O5–CaF2 system, in: I. Antoniac (Eds.), Bioceramics and Biocomposites: From Research to Clinical Practice, Wiley, New York, 2019, p.123–148.

DOI: 10.1002/9781119372097.ch6

Google Scholar

[43] K. Dimitriadis, D. Moschovas, D.U. Tulyaganov, S. Agathopoulos, Development of novel bioactive glass-ceramics in the Na2O/K2O-CaO-MgO-SiO2-P2O5-CaF2 system, J. Non-Cryst. Solids 533 (2020).

DOI: 10.1016/j.jnoncrysol.2020.119936

Google Scholar

[44] K. Dimitriadis, K.C. Vasilopoulos, T.C. Vaimakis, M.A. Karakassides, D.U. Tulyaganov, S. Agathopoulos, Synthesis of glass-ceramics in the Na2O/K2O-CaO-MgO-SiO2-P2O5-CaF2 system as candidate materials for dental applications, Int. J. Appl. Ceram. Technol. 17 (2020) 2025–(2035).

DOI: 10.1111/ijac.13509

Google Scholar

[45] K. Dimitriadis, D.U. Tulyaganov, S. Agathopoulos, Development of novel alumina-containing bioactive glass-ceramics in the CaO-MgO-SiO2 system as candidates for dental implant applications, J. Eur. Ceram. Soc. 41 (2021) 929–940.

DOI: 10.1016/j.jeurceramsoc.2020.08.005

Google Scholar

[46] K. Dimitriadis, D. Moschovas, D.U. Tulyaganov, S. Agathopoulos, Glass-ceramics in the CaO–MgO–Al2O3–SiO2 system as potential dental restorative materials, Int. J. Appl. Ceram. Technol. 18 (2021) 1938–(1949).

DOI: 10.1111/ijac.13836

Google Scholar

[47] K. Dimitriadis, D.U. Tulyaganov, K.C. Vasilopoulos, M.A. Karakassides, S. Agathopoulos, Influence of K and Mg substitutions on the synthesis and the properties of CaO-MgO-SiO2/Na2O, P2O5, CaF2 bioactive glasses, J. Non-Cryst. Solids 573 (2021) 121140.

DOI: 10.1016/j.jnoncrysol.2021.121140

Google Scholar

[48] M. Montazerian, E.D. Zanotto, History and trends of bioactive glass-ceramics, J. Biomed. Mater. Res. Part A 104 (2016) 1231-1249.

DOI: 10.1002/jbm.a.35639

Google Scholar

[49] M. Montazerian, E.D. Zanotto, Bioactive and inert dental glass-ceramics, Biomed. Mater. Res. A 105 (2017) 619-639.

DOI: 10.1002/jbm.a.35923

Google Scholar

[50] S.A. Saadaldin, S.J. Dixon, D.O. Costa, A.S. Rizkalla, Synthesis of bioactive and machinable miserite glass-ceramics for dental implant applications, Dent. Mater. 29 (2013) 645–655.

DOI: 10.1016/j.dental.2013.03.013

Google Scholar

[51] S.A. Saadaldin, A.S. Rizkalla, Synthesis and characterization of wollastonite glass–ceramics for dental implant applications, Dent. Mater. 30 (2014) 364–371.

DOI: 10.1016/j.dental.2013.12.007

Google Scholar

[52] S.A. Saadaldin, S.J. Dixon, A.S. Rizkalla, Bioactivity and biocompatibility of a novel wollastonite glass-ceramic biomaterial, J. Biomater. Tissue Eng. 4 (2014) 939-946.

DOI: 10.1166/jbt.2014.1261

Google Scholar

[53] F. Baino, E. Verné, Production and characterization of glass-ceramic materials for potential use in dental applications: thermal and mechanical properties, microstructure, and in vitro bioactivity, Appl. Sci. 7 (2017) 1-16.

DOI: 10.3390/app7121330

Google Scholar

[54] X. Chen, X. Liao, Z. Huang, P. You, C. Chen, Y. Kang, G. Yin, Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system, J. Biomed. Mater. Res. B Appl. Biomater. 93 (2010) 194-202.

DOI: 10.1002/jbm.b.31574

Google Scholar

[55] J.W. McLean, Evolution of dental ceramics in the twentieth century, J. Prosthet. Dent. 85 (2001) 61-66.

Google Scholar

[56] R.D. Goodridge, C. Ohtsuki, M. Kamitakahara, D.J. Wood, K.W. Dalgarno, Fabrication of bioactive glass-ceramics by Selective Laser Sintering, Key Engineering Materials 309-311 (2006) 289-292.

DOI: 10.4028/www.scientific.net/kem.309-311.289

Google Scholar

[57] M. Fateri, A. Gebhardt, S. Thuemmler, L. Thurn, Experimental investigation on selective laser melting of glass, Physics Procedia 56 (2014) 357-364.

DOI: 10.1016/j.phpro.2014.08.118

Google Scholar

[58] T. Akova, Y. Ucar, A. Tukay, M.C. Balkaya, W.A. Brantley, Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain, Dent. Mater. 24 (2008) 1400-1404.

DOI: 10.1016/j.dental.2008.03.001

Google Scholar