Apatite-Graphene and Apatite-Graphene Oxide Nanocomposites: Hybrid Materials with Tailored Biological and Luminescent Properties

Article Preview

Abstract:

Apatite nanocomposites with graphene (G) or graphene oxide (GO) nanoflakes, as well as with related carbonaceous materials, present promising applications in hard tissue engineering, biomedicine, or drug delivery. Different methodologies have been explored in the last years to prepare apatite-based nanocomposites. Sitting drop vapour diffusion (SDVD) methodology induces the heterogeneous nucleation of biomimetic apatite on the reinforcement material, improving biological properties of the nanocomposites. In this work SDVD was used to prepare G-apatite and GO-apatite nanocomposites. Prior to the SDVD experiments, G flakes were obtained by sonication-assisted liquid-phase exfoliation (LPE) using L-Alanine (L-Aln) as dispersing biomolecule, while a commercial aqueous Graphene Oxide (GO) dispersion was used for the nucleation essays in presence of the same biomolecules. A parallel set of nucleation experiments was performed in presence of Tb3+ ions, to endow the nanocomposites of luminescent properties. Characterization by XRD, FTIR, and TEM demonstrated the heterogeneous nucleation of needle-shaped apatite nanocrystals on the surfaces of G and GO flakes. Fluorescence spectroscopy certified the presence of Tb3+ ions in the nanocomposites resulting in luminescent materials which can be used in imaging or theragnostic. Finally, in vitro tests with human mesenchymal stem cells revealed excellent cytocompatibility and cell proliferation in presence of the nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 340)

Pages:

137-141

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.C. Lucas, W.R. Lacefield, J.L. Ong, R.Y. Whitehead, Calcium phosphate coatings for medical and dental implants, Colloids Surfaces A Physicochem. Eng. Asp. 77 (1993) 141–147. https://doi.org/10.1016/0927-7757(93)80110-Z.

DOI: 10.1016/0927-7757(93)80110-z

Google Scholar

[2] J.Gómez-Morales, R. Rodríguez-Clemente, B. Armas, C. Combescure, R. Berjoan, J. Cubo, E. Martínez, J. García-Carmona, S. Garelik, J. Murtra, D.N. Muraviev, Controlled nucleation and growth of thin hydroxyapatite layers on titanium implants by using induction heating technique, Langmuir. 20 (2004) 5174–5178. https://doi.org/10.1021/la0363682.

DOI: 10.1021/la0363682

Google Scholar

[3] E.J. Duplock, M. Scheffler, P.J.D. Lindan, Hallmark of perfect graphene, Phys. Rev. Lett. 92 (2004) 225502. https://doi.org/10.1103/PhysRevLett.92.225502.

DOI: 10.1103/physrevlett.92.225502

Google Scholar

[4] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191. https://doi.org/10.1038/nmat1849.

Google Scholar

[5] I. Romero-Castillo, E. López-Ruiz, J.F. Fernández-Sánchez, J.A. Marchal, J. Gómez-Morales, Self-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells, Macromol. Biosci. 21 (2021) 2000319. https://doi.org/10.1002/MABI.202000319.

DOI: 10.1002/mabi.202000319

Google Scholar

[6] A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation, Chem. Soc. Rev. 43 (2014) 381–398. https://doi.org/10.1039/c3cs60217f.

DOI: 10.1039/c3cs60217f

Google Scholar

[7] M. Iafisco, J. Gómez-Morales, M.A. Hernández-Hernández, J.M. García-Ruiz, N. Roveri, Biomimetic carbonate-hydroxyapatite nanocrystals prepared by vapor diffusion, Adv. Eng. Mater. 12 (2010) 218–223. https://doi.org/10.1002/adem.201080003.

DOI: 10.1002/adem.201080003

Google Scholar

[8] E. López-Ruiz, G. Jiménez, W. Kwiatkowski, E. Montañez, F. Arrebola, E. Carrillo, S. Choe, J.A. Marchal, M. Perán, Impact of TGF-β family-related growth factors on chondrogenic differentiation of adipose-derived stem cells isolated from lipoaspirates and infrapatellar fat pads of osteoarthritic patients., Eur. Cell. Mater. 35 (2018) 209–224. https://doi.org/10.22203/ECM.V035A15.

DOI: 10.22203/ecm.v035a15

Google Scholar

[9] J. Gómez-Morales, C. Verdugo-Escamilla, R. Fernández-Penas, C.M. Parra-Milla, C. Drouet, F. Maube-Bosc, F. Oltolina, M. Prat, J.F. Fernández-Sánchez, Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: Physico-chemistry and cytocompatibility, RSC Adv. 8 (2018) 2385–2397. https://doi.org/10.1039/c7ra12536d.

DOI: 10.1039/c7ra12536d

Google Scholar

[10] I. Hemmilä, S. Dakubu, V.M. Mukkala, H. Siitari, T. Lövgren, Europium as a label in time-resolved immunofluorometric assays, Anal. Biochem. 137 (1984) 335–343. https://doi.org/10.1016/0003-2697(84)90095-2.

DOI: 10.1016/0003-2697(84)90095-2

Google Scholar