Investigation of Microwave Sintering of B-Type Carbonated Hydroxyapatite Bioceramics

Article Preview

Abstract:

B-type carbonated hydroxyapatite (CBHA) is potentially an excellent biodegradable bioceramic for bone repair. However, conventional sintering results in formation of undesired phases. Therefore, microwave sintering of CBHA was investigated to assess the possibility to reduce formation of unwanted phases. Pellets with 0.8 mol% of B-type carbonate were sintered in a multimode instrumented cavity under static air with short thermal cycles. They were prepared from a CBHA powder alone and from a mixture of CBHA and carbon powder to generate a local in-situ CO2 atmosphere. XRD, FT-IR, SEM and BET analyses indicated that CBHA densification with increase temperature lead to decomposition into apatite. The addition of carbon powder to the CBHA that generate a CO2-rich atmosphere around the samples did not prevent the decomposition. Efficient control of temperature and atmosphere composition is required to improve microwave sintering of CBHA bioceramics.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 340)

Pages:

119-130

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, G. Logroscino, Bone substitutes in orthopaedic surgery: from basic science to clinical practice, J. Mater. Sci. Mater. Med. 25 (2014) 2445–2461. https://doi.org/10.1007/s10856-014-5240-2.

DOI: 10.1007/s10856-014-5240-2

Google Scholar

[2] W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: materials for the future?, Mater. Today. 19 (2016) 69–87. https://doi.org/10.1016/j.mattod.2015.10.008.

DOI: 10.1016/j.mattod.2015.10.008

Google Scholar

[3] R. Detsch, H. Mayr, G. Ziegler, Formation of osteoclast-like cells on HA and TCP ceramics, Acta Biomater. 4 (2008) 139–148. https://doi.org/10.1016/j.actbio.2007.03.014.

DOI: 10.1016/j.actbio.2007.03.014

Google Scholar

[4] J. Barralet, M. Akao, H. Aoki, H. Aoki, Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats, J. Biomed. Mater. Res. 49 (2000) 176–182. https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<176::AID-JBM4>3.0.CO;2-8.

DOI: 10.1002/(sici)1097-4636(200002)49:2<176::aid-jbm4>3.0.co;2-8

Google Scholar

[5] A. Ogose, T. Hotta, H. Kawashima, N. Kondo, W. Gu, T. Kamura, N. Endo, Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors, J. Biomed. Mater. Res. B Appl. Biomater. 72 (2005) 94–101. https://doi.org/10.1002/jbm.b.30136.

DOI: 10.1002/jbm.b.30136

Google Scholar

[6] G. Spence, N. Patel, R. Brooks, W. Bonfield, N. Rushton, Osteoclastogenesis on hydroxyapatite ceramics: the effect of carbonate substitution, J. Biomed. Mater. Res. A. 92 (2010) 1292–1300. https://doi.org/10.1002/jbm.a.32373.

DOI: 10.1002/jbm.a.32373

Google Scholar

[7] R.Z. LeGeros, O.R. Trautz, E. Klein, J.P. LeGeros, Two types of carbonate substitution in the apatite structure, Experientia. 25 (1969) 5–7. https://doi.org/10.1007/BF01903856.

DOI: 10.1007/bf01903856

Google Scholar

[8] M.E. Fleet, Carbonated Hydroxyapatite: Materials, Synthesis, and Applications, Jenny Stanford Publishing, New York, 2014. https://doi.org/10.1201/b17954.

Google Scholar

[9] S.A. Redey, M. Nardin, D. Bernache-Assolant, C. Rey, P. Delannoy, L. Sedel, P.J. Marie, Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy, J. Biomed. Mater. Res. 50 (2000) 353–364. https://doi.org/10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c.

DOI: 10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c

Google Scholar

[10] B. Li, X. Liao, L. Zheng, H. He, H. Wang, H. Fan, X. Zhang, Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics, Mater. Sci. Eng. C. 32 (2012) 929–936. https://doi.org/10.1016/j.msec.2012.02.014.

DOI: 10.1016/j.msec.2012.02.014

Google Scholar

[11] L.T. Bang, S. Ramesh, J. Purbolaksono, Y.C. Ching, B.D. Long, H. Chandran, S. Ramesh, R. Othman, Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method, Mater. Des. 87 (2015) 788–796. https://doi.org/10.1016/j.matdes.2015.08.069.

DOI: 10.1016/j.matdes.2015.08.069

Google Scholar

[12] R.Z. LeGeros, R.Z. LeGeros, Calcium phosphates in oral biology and medicine, Karger, Basel, (1991).

Google Scholar

[13] C. Rey, B. Collins, T. Goehl, I.R. Dickson, M.J. Glimcher, The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study, Calcif. Tissue Int. 45 (1989) 157–164. https://doi.org/10.1007/BF02556059.

DOI: 10.1007/bf02556059

Google Scholar

[14] A. Boyer, D. Marchat, D. Bernache-Assollant, Synthesis and Characterization of Cx-Siy-HA for Bone Tissue Engineering Application, Key Eng. Mater. (2013). https://doi.org/10.4028/www.scientific.net/KEM.529-530.100.

DOI: 10.4028/www.scientific.net/kem.529-530.100

Google Scholar

[15] N. Douard, L. Leclerc, G. Sarry, V. Bin, D. Marchat, V. Forest, J. Pourchez, Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages, Biomed. Microdevices. 18 (2016) 27. https://doi.org/10.1007/s10544-016-0056-0.

DOI: 10.1007/s10544-016-0056-0

Google Scholar

[16] E. Landi, G. Celotti, G. Logroscino, A. Tampieri, Carbonated hydroxyapatite as bone substitute, J. Eur. Ceram. Soc. 23 (2003) 2931–2937. https://doi.org/10.1016/S0955-2219(03)00304-2.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar

[17] J.P. Lafon, E. Champion, D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition, J. Eur. Ceram. Soc. 28 (2008) 139–147. https://doi.org/10.1016/j.jeurceramsoc. 2007.06.009.

DOI: 10.1016/j.jeurceramsoc.2007.06.009

Google Scholar

[18] M. Safarzadeh, C.F. Chee, S. Ramesh, M.N.A. Fauzi, Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA), Ceram. Int. 46 (2020) 26784–26789. https://doi.org/10.1016/j.ceramint.2020.07.153.

DOI: 10.1016/j.ceramint.2020.07.153

Google Scholar

[19] Z. Zyman, M. Tkachenko, CO2 gas-activated sintering of carbonated hydroxyapatites, J. Eur. Ceram. Soc. 31 (2011) 241–248. https://doi.org/10.1016/j.jeurceramsoc.2010.09.005.

DOI: 10.1016/j.jeurceramsoc.2010.09.005

Google Scholar

[20] D.K. Agrawal, Microwave processing of ceramics, Curr. Opin. Solid State Mater. Sci. 3 (1998) 480–485. https://doi.org/10.1016/S1359-0286(98)80011-9.

Google Scholar

[21] M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd. 494 (2010) 175–189. https://doi.org/10.1016/j.jallcom.2010.01.068.

DOI: 10.1016/j.jallcom.2010.01.068

Google Scholar

[22] P. Sikder, Y. Ren, S.B. Bhaduri, Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review, Acta Biomater. 111 (2020) 29–53. https://doi.org/10.1016/j.actbio.2020.05.018.

DOI: 10.1016/j.actbio.2020.05.018

Google Scholar

[23] N. Somers, F. Jean, M. Lasgorceix, H. Curto, G. Urruth, A. Thuault, F. Petit, A. Leriche, Influence of dopants on thermal stability and densification of β-tricalcium phosphate powders, Open Ceram. 7 (2021) 100168. https://doi.org/10.1016/j.oceram.2021.100168.

DOI: 10.1016/j.oceram.2021.100168

Google Scholar

[24] Y. Fang, D.K. Agrawal, D.M. Roy, R. Roy, Fabrication of porous hydroxyapatite ceramics by microwave processing, J. Mater. Res. 7 (1992) 490–494. https://doi.org/10.1557/JMR. 1992.0490.

DOI: 10.1557/jmr.1992.0490

Google Scholar

[25] Y. Fang, D.K. Agrawal, D.M. Roy, R. Roy, Microwave sintering of hydroxyapatite ceramics, J. Mater. Res. 9 (1994) 180–187. https://doi.org/10.1557/JMR.1994.0180.

DOI: 10.1557/jmr.1994.0180

Google Scholar

[26] A. Chanda, S. Dasgupta, S. Bose, A. Bandyopadhyay, Microwave sintering of calcium phosphate ceramics, Mater. Sci. Eng. C. 29 (2009) 1144–1149. https://doi.org/10.1016/j.msec. 2008.09.008.

DOI: 10.1016/j.msec.2008.09.008

Google Scholar

[27] M.G. Kutty, S.B. Bhaduri, H. Zhou, A. Yaghoubi, In situ measurement of shrinkage and temperature profile in microwave- and conventionally-sintered hydroxyapatite bioceramic, Mater. Lett. 161 (2015) 375–378. https://doi.org/10.1016/j.matlet.2015.08.136.

DOI: 10.1016/j.matlet.2015.08.136

Google Scholar

[28] B. Li, X. Chen, B. Guo, X. Wang, H. Fan, X. Zhang, Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure, Acta Biomater. 5 (2009) 134–143. https://doi.org/10.1016/j.actbio.2008.07.035.

DOI: 10.1016/j.actbio.2008.07.035

Google Scholar

[29] N. Khalile, C. Petit, C. Meunier, F. Valdivieso, Hybrid microwave sintering of alumina and 3 mol% Y2O3-stabilized zirconia in a multimode cavity – Influence of the sintering cell, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.03.072.

DOI: 10.1016/j.ceramint.2022.03.072

Google Scholar

[30] R. Macaigne, S. Marinel, D. Goeuriot, C. Meunier, S. Saunier, G. Riquet, Microwave sintering of pure and TiO2 doped MgAl2O4 ceramic using calibrated, contactless in-situ dilatometry, Ceram. Int. 42 (2016) 16997–17003. https://doi.org/10.1016/j.ceramint.2016.07.206.

DOI: 10.1016/j.ceramint.2016.07.206

Google Scholar

[31] J. Croquesel, D. Bouvard, J.-M. Chaix, C.P. Carry, S. Saunier, Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder, Mater. Des. 88 (2015) 98–105. https://doi.org/10.1016/j.matdes. 2015.08.122.

DOI: 10.1016/j.matdes.2015.08.122

Google Scholar

[32] X.-Y. Liu, M. Huang, H.-L. Ma, Z.-Q. Zhang, J.-M. Gao, Y.-L. Zhu, X.-J. Han, X.-Y. Guo, Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process, Molecules. 15 (2010) 7188–7196. https://doi.org/10.3390/molecules15107188.

DOI: 10.3390/molecules15107188

Google Scholar

[33] C.F. Ramirez-Gutierrez, R. Arias-Niquepa, J.J. Prías-Barragán, M.E. Rodriguez-Garcia, Study and identification of contaminant phases in commercial activated carbons, J. Environ. Chem. Eng. 8 (2020) 103636. https://doi.org/10.1016/j.jece.2019.103636.

DOI: 10.1016/j.jece.2019.103636

Google Scholar

[34] C. Rey, V. Renugopalakrishman, B. Collins, M.J. Glimcher, Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging, Calcif. Tissue Int. 49 (1991) 251–258. https://doi.org/10.1007/BF02556214.

DOI: 10.1007/bf02556214

Google Scholar

[35] A. Paré, B. Charbonnier, P. Tournier, C. Vignes, J. Veziers, J. Lesoeur, B. Laure, H. Bertin, G. De Pinieux, G. Cherrier, J. Guicheux, O. Gauthier, P. Corre, D. Marchat, P. Weiss, Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair, ACS Biomater. Sci. Eng. 6 (2020) 553–563. https://doi.org/10.1021/acsbiomaterials.9b01241.

DOI: 10.1021/acsbiomaterials.9b01241

Google Scholar

[36] J.-C. Labarthe, G. Bonel, G. Montel, Sur la structure et les propriétés des apatites carbonatées de type B phospho-calciques., Ann. Chim. 8 (1973) 289–301.

Google Scholar

[37] J.P. Lafon, E. Champion, D. Bernache-Assollant, R. Gibert, A.M. Danna, Termal decomposition of carbonated calcium phosphate apatites, J. Therm. Anal. Calorim. 72 (2003) 1127–1134. https://doi.org/10.1023/A:1025036214044.

DOI: 10.1023/a:1025036214044

Google Scholar

[38] A. Boyer, Synthèse, caractérisation et évaluation biologique d'apatites phosphocalciques carbo silicatées, thesis, Saint-Etienne, EMSE, 2014. http://www.theses.fr/2014EMSE0739 (accessed March 16, 2020).

Google Scholar

[39] R.R. Mishra, A.K. Sharma, Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing, Compos. Part Appl. Sci. Manuf. 81 (2016) 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035.

DOI: 10.1016/j.compositesa.2015.10.035

Google Scholar

[40] J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, J.M. Bermúdez, Microwave heating processes involving carbon materials, Fuel Process. Technol. 91 (2010) 1–8. https://doi.org/10.1016/j.fuproc.2009.08.021.

DOI: 10.1016/j.fuproc.2009.08.021

Google Scholar

[41] W. Lerdprom, E. Zapata-Solvas, D.D. Jayaseelan, A. Borrell, M.D. Salvador, W.E. Lee, Impact of microwave processing on porcelain microstructure, Ceram. Int. 43 (2017) 13765–13771. https://doi.org/10.1016/j.ceramint.2017.07.090.

DOI: 10.1016/j.ceramint.2017.07.090

Google Scholar

[42] T. Santos, L. Hennetier, V.A.F. Costa, L.C. Costa, Microwave versus conventional porcelain firing: Temperature measurement, J. Manuf. Process. 41 (2019) 92–100. https://doi.org/10.1016/j.jmapro.2019.03.038.

DOI: 10.1016/j.jmapro.2019.03.038

Google Scholar

[43] D. Żymełka, S. Saunier, J. Molimard, D. Goeuriot, Contactless Monitoring of Shrinkage and Temperature Distribution during Hybrid Microwave Sintering, Adv. Eng. Mater. 13 (2011) 901–905. https://doi.org/10.1002/adem.201000354.

DOI: 10.1002/adem.201000354

Google Scholar

[44] F. Zuo, S. Saunier, S. Marinel, P. Chanin-Lambert, N. Peillon, D. Goeuriot, Investigation of the mechanism(s) controlling microwave sintering of α-alumina: Influence of the powder parameters on the grain growth, thermodynamics and densification kinetics, J. Eur. Ceram. Soc. 35 (2015) 959–970. https://doi.org/10.1016/j.jeurceramsoc.2014.10.025.

DOI: 10.1016/j.jeurceramsoc.2014.10.025

Google Scholar