[1]
D. Chen, X. Jiao, Y. Zhao, M. He, J. Power Technol. 133 (2003) 247-250.
Google Scholar
[2]
X. Shi, S.H. Wang, S.D. Sswanson, S. Ge, G.Y. Cao, M.E. Van Antwerp, K.J. Landmark, J.R.J. Baker, Adv. Mater. 20 (2008) 1671-1678.
Google Scholar
[3]
J. Hong, D.M. Xu, J.H. Yu, P.J. Gong, H.J. Ma, S.D. Yao, Nanotechnol. 18 (2007) 135608.
Google Scholar
[4]
J.H. Park, G.V. Maltzahn, L.L. Zhang, M.P. Schwartz, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Adv. Mater. 20 (2008) 1630-1635.
DOI: 10.1002/adma.200800004
Google Scholar
[5]
A. Ceylan, S. Ozcan, C.Ni, S.I. Shah, J. Magn. Magn. Mater. 320 (2008) 857-863.
Google Scholar
[6]
A. Sutka, R.Parna, T.B. Kaambre, V. Kisand, Physica B. 456 (2015) 232-236.
Google Scholar
[7]
A. Ditta, M.A. Khan, M. Junaid, R.M.A. Khalil, M.F. Warsi, Physica B 507 (2017) 27-34
Google Scholar
[8]
K. Ishino, Y. Narumiya, Ceram. Bull. 66 (1987) 1469.
Google Scholar
[9]
C.P.L. Rubinger, D.X. Gouveia, J.F. Nunes, C.C.M. Salgueiro, J.AC Paiva, A.M.P.F. Grac, P. Andre, L.C. Costa, Microw. Opt.Technol. Lett. 49 (2007) 53-60.
Google Scholar
[10]
K. Pubby, S.R. Bhongale, P.N. Vasambekar, S. Bindra Narang, 2019 3rd International Conference on Electronics, Materials Engineering & Nano-technology (IEMENTech) (2019).
DOI: 10.1109/IEMENTech48150.2019.8981054
Google Scholar
[11]
X. Wu, W. Chen, W. Wu, H. Li, C. Lin, J. Electron. Mater. 46 (2017 JEM) 199-207
Google Scholar
[12]
M. Rahimia, M. Eshraghi, P. Kameli, Ceram. Int. 40 (2014) 15569-15575.
Google Scholar
[13]
P.B. Belavi, G.N. Chavan, L.R. Naik, R. Somashekar, R.K. Kotnala, Mater. Chem. Phys. 132(1) (2012) 138-144
Google Scholar
[14]
M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, J. Magn. Magn. Mater. 421 (2017)260-268.
Google Scholar
[15]
J.S. Ghodake, R.C. Kamble, T.J. Shinde, P.K. Maskar, S.S. Suryavanshi, J. Magn. Magn. Mater. 401 (2016) 938-942
Google Scholar
[16]
P. Chavan, L.R. Naik, P.B. Belavi, G. Chavan, C.K. Ramesha, R.K. Kotnala, J. Electron Mater. 46 (2017) 188-198
DOI: 10.1007/s11664-016-4886-6
Google Scholar
[17]
J. Kulikowski, J. Magn. Magn. Mater. 41 (1990) 56
Google Scholar
[18]
M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123 (2017) 8.
Google Scholar
[19]
P. Gao, X. Hua, V. Degirmenci, D. Rooney, M. Khraisheh, R. Pollard, R.M. Bowmen, E.V. Rebrov, J. Magn. Magn. Mater. 348(2013) 44-50.
Google Scholar
[20]
Z. Liu, Z. Peng, C. Lv, X. Fu, Ceram. Int. 43 (2017) 1449-1454
Google Scholar
[21]
S. Rana, J. Rawat, R.D.K. Misra, Acta Biometer. 1 (2005) 691.
Google Scholar
[22]
S. Rana, R.S. Srivastava, M.M. Sorensson, R.D.K. Misra, Mater. Sci. Engg. C 119 (2005 MSEC) 114.
Google Scholar
[23]
Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., & Muthamizhchelvan, C. (2011). Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Materials Research Bulletin, 46(12), 2204-2207.
DOI: 10.1016/j.materresbull.2011.09.010
Google Scholar
[24]
Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, J. Phys. Chem. B 112 (2008) 11292.
Google Scholar
[25]
C. Hammond, The Basics of Crystallography and Diffraction, Oxford University
Google Scholar
[26]
Nejati, K., & Zabihi, R. (2012). Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chemistry Central Journal
DOI: 10.1186/1752-153x-6-23
Google Scholar
[27]
S. Balaji, R.K. Selvan, L.J. Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Mater Sc. & Eng. B 119 (2005) 119-124
DOI: 10.1016/j.mseb.2005.01.021
Google Scholar
[28]
Standard, A.S.T.M. (2006). Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity for Fired Whitewater Products. Annual Book ASTM Standard, 15, 112-113.
DOI: 10.1520/c0373-14a
Google Scholar