Investigation of Microstructure and Physical Properties of Nickel Ferrites, Synthesized via Sol-Gel Method

Article Preview

Abstract:

In this paper, studying synthesis and characterization of ferrospinel nickel ferrite. Nickel ferrite is prepared by using the sol-gel method, with a ratio of 2:1 of iron nitrate to nickel nitrate. First the starting material is dissolved in 100 ml of ethylene glycol solution to get the gel and then the gel was dried at 160°C then calcined at 600°C to obtain fine powder, second the nickel ferrite powder is pressed and sintered at 1200°C. To characterize nickel ferrite are used different techniques, such as: XRD is shown high purity, the purity of the nickel ferrite is known and the extent to which the material is affected by the temperatures of calcination and sintering. FT-IR that is shown absorption band between the elements of the components of nickel ferrite appears. The shape of the resulting powder is known through the SEM, the SEM images showed the spherical shape of the nickel ferrite powder, found the particular size of powder at 600°C ranges between405-264 nm and for sample after sintering at 1200°C ranges between589-353 nm, and our Physical characterization test down.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 341)

Pages:

57-64

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chen, X. Jiao, Y. Zhao, M. He, J. Power Technol. 133 (2003) 247-250.

Google Scholar

[2] X. Shi, S.H. Wang, S.D. Sswanson, S. Ge, G.Y. Cao, M.E. Van Antwerp, K.J. Landmark, J.R.J. Baker, Adv. Mater. 20 (2008) 1671-1678.

Google Scholar

[3] J. Hong, D.M. Xu, J.H. Yu, P.J. Gong, H.J. Ma, S.D. Yao, Nanotechnol. 18 (2007) 135608.

Google Scholar

[4] J.H. Park, G.V. Maltzahn, L.L. Zhang, M.P. Schwartz, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Adv. Mater. 20 (2008) 1630-1635.

DOI: 10.1002/adma.200800004

Google Scholar

[5] A. Ceylan, S. Ozcan, C.Ni, S.I. Shah, J. Magn. Magn. Mater. 320 (2008) 857-863.

Google Scholar

[6] A. Sutka, R.Parna, T.B. Kaambre, V. Kisand, Physica B. 456 (2015) 232-236.

Google Scholar

[7] A. Ditta, M.A. Khan, M. Junaid, R.M.A. Khalil, M.F. Warsi, Physica B 507 (2017) 27-34

Google Scholar

[8] K. Ishino, Y. Narumiya, Ceram. Bull. 66 (1987) 1469.

Google Scholar

[9] C.P.L. Rubinger, D.X. Gouveia, J.F. Nunes, C.C.M. Salgueiro, J.AC Paiva, A.M.P.F. Grac, P. Andre, L.C. Costa, Microw. Opt.Technol. Lett. 49 (2007) 53-60.

Google Scholar

[10] K. Pubby, S.R. Bhongale, P.N. Vasambekar, S. Bindra Narang, 2019 3rd International Conference on Electronics, Materials Engineering & Nano-technology (IEMENTech) (2019).

DOI: 10.1109/IEMENTech48150.2019.8981054

Google Scholar

[11] X. Wu, W. Chen, W. Wu, H. Li, C. Lin, J. Electron. Mater. 46 (2017 JEM) 199-207

Google Scholar

[12] M. Rahimia, M. Eshraghi, P. Kameli, Ceram. Int. 40 (2014) 15569-15575.

Google Scholar

[13] P.B. Belavi, G.N. Chavan, L.R. Naik, R. Somashekar, R.K. Kotnala, Mater. Chem. Phys. 132(1) (2012) 138-144

Google Scholar

[14] M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, J. Magn. Magn. Mater. 421 (2017)260-268.

Google Scholar

[15] J.S. Ghodake, R.C. Kamble, T.J. Shinde, P.K. Maskar, S.S. Suryavanshi, J. Magn. Magn. Mater. 401 (2016) 938-942

Google Scholar

[16] P. Chavan, L.R. Naik, P.B. Belavi, G. Chavan, C.K. Ramesha, R.K. Kotnala, J. Electron Mater. 46 (2017) 188-198

DOI: 10.1007/s11664-016-4886-6

Google Scholar

[17] J. Kulikowski, J. Magn. Magn. Mater. 41 (1990) 56

Google Scholar

[18] M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123 (2017) 8.

Google Scholar

[19] P. Gao, X. Hua, V. Degirmenci, D. Rooney, M. Khraisheh, R. Pollard, R.M. Bowmen, E.V. Rebrov, J. Magn. Magn. Mater. 348(2013) 44-50.

Google Scholar

[20] Z. Liu, Z. Peng, C. Lv, X. Fu, Ceram. Int. 43 (2017) 1449-1454

Google Scholar

[21] S. Rana, J. Rawat, R.D.K. Misra, Acta Biometer. 1 (2005) 691.

Google Scholar

[22] S. Rana, R.S. Srivastava, M.M. Sorensson, R.D.K. Misra, Mater. Sci. Engg. C 119 (2005 MSEC) 114.

Google Scholar

[23] Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., & Muthamizhchelvan, C. (2011). Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Materials Research Bulletin, 46(12), 2204-2207.

DOI: 10.1016/j.materresbull.2011.09.010

Google Scholar

[24] Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, J. Phys. Chem. B 112 (2008) 11292.

Google Scholar

[25] C. Hammond, The Basics of Crystallography and Diffraction, Oxford University

Google Scholar

[26] Nejati, K., & Zabihi, R. (2012). Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chemistry Central Journal

DOI: 10.1186/1752-153x-6-23

Google Scholar

[27] S. Balaji, R.K. Selvan, L.J. Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Mater Sc. & Eng. B 119 (2005) 119-124

DOI: 10.1016/j.mseb.2005.01.021

Google Scholar

[28] Standard, A.S.T.M. (2006). Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity for Fired Whitewater Products. Annual Book ASTM Standard, 15, 112-113.

DOI: 10.1520/c0373-14a

Google Scholar