General Theory of Nano Trilayer Film Bending

Article Preview

Abstract:

Multilayer sheets or films have many potential applications in micro-nanoelectromechanical systems. When surface and scale effects are not considered, the bending of multilayer film systems can theoretically be discussed by the classical Stoney formula or Timoshenko formula. When the system has anisotropic surface stress or mismatch strain, the four-parameter bending model proposed by Narsu et al. can be used. However, if the thickness of the film is several nanometers and the bending radius of curvature is less than 1micron, the existing theoretical model is no longer applicable. For this reason, a bending formulation for the nanomulti-layer film system is derived and the structure of the multilayer film is optimized in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 341)

Pages:

99-107

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Risplendi, A. Ricci, G. Cicero,Functionalization layer effect on the mechanical properties of silicon based micro-cantilever mass sensor: A theoretical study , Sens. Actuators B, 195 (2014) 177-180.

DOI: 10.1016/j.snb.2013.12.116

Google Scholar

[2] X. Liang, S.L. Hu, S.P. Shen, Effects of surface and flexoelectricity on a piezoelectric nanobeam, Smart Mater. Struct, 23 (2014) 035020-1-8.

DOI: 10.1088/0964-1726/23/3/035020

Google Scholar

[3] Y.G. Sun, V. Kumar, I. Adesida, Buckled and wavy ribbons of GaAs for high-performance electronics on elastomeric substrates, Adv. Mater., 18 (2006) 2857.

DOI: 10.1002/adma.200600646

Google Scholar

[4] K. Gansel Justyna, Thiel Michael, S. Rill Michael, Gold helix photonic metamaterial as broadband circular polarizer, Science, 325 (2009) 1513.

DOI: 10.1126/science.1177031

Google Scholar

[5] Y. Zheng, W. Smith, J. Jackson, Multiscale metallic metamaterials, Nat. Mater., 15(2016) 1100.

Google Scholar

[6] X.H. Liu, T.T. Ma, Y.S. Xu, Rolled-up SnO2 nanomembranes: A new platform for effificient gas sensors, Sens. Actuator. B, 264 (2018) 92.

DOI: 10.1016/j.snb.2018.02.187

Google Scholar

[7] R. Sharma, C.C. BofBufon, D. Grimm, R. Sommer, A. Wollatz, J. Schadewald, D.J. Thurmer, P.F. Siles, M. Bauer, and O.G. Schmidt, Large-area rolled-up nanomembrane capacitor arrays for electrostatic energy storage, Adv. Energy Mater., 4 (2014) 1301631.

DOI: 10.1002/aenm.201301631

Google Scholar

[8] G. Li, M. Yarali, A. Cocemasov, In-plane thermal conductivity of radial and planar Si/SiOx hybrid nanomembrane superlattices, ACS Nano, 11 (2017) 8215.

DOI: 10.1021/acsnano.7b03219.s001

Google Scholar

[9] Z. Chen, G. Huang, I. Trase, X. Han, and Y. Mei, Ian Trase etc.Mechanical self-assembly of a strain-engineered flexible layer: Wrinkling, Rolling, and Twisting,Phys. Rev. Appl., 5 (2016) 017001.

DOI: 10.1103/physrevapplied.5.017001

Google Scholar

[10] Y. Saqier, G.H. Yun, B. Narisu, Effect of size dependent surface stress on bending of ultrathin nanofilms, Applied Physics Express, 13 (2020) 115004.

DOI: 10.35848/1882-0786/abc1f7

Google Scholar

[11] James Bowen, David Cheneler, On the origin and magnitude of surface stresses due to metal nanofifilms, [J]. Nanoscale, 8 (2016) 4245.

DOI: 10.1039/c5nr08789a

Google Scholar

[12] B. Narsu and G.H. Yun, Modelling of the magnetostrictive trilayer cantilever for actuators, J. Phys. D: Appl. Phys. 41 (2008) 095307.

DOI: 10.1088/0022-3727/41/9/095309

Google Scholar