[1]
M. Zhang, M. Wu, Q. Liu, X. Wang, T. Lv, L. Jia, L, Graphene Oxide Mediated Cellulose-Derived Carbon as A Highly Selective Catalyst for The Hydrolysis of Cellulose to Glucose, Journal Applied Catalysis A: General, 543 (2017) 218–224.
DOI: 10.1016/j.apcata.2017.06.033
Google Scholar
[2]
Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, Journal of Colloid Interface Sci. 368 (2012) 540–546.
DOI: 10.1016/j.jcis.2011.11.015
Google Scholar
[3]
K. Krishnamoorthy, G.-S. Kim, S.-J. Kim, Graphene nanosheets: Ultrasound assisted synthesis and characterization, Ultrasonic Sonochem. 20 (2013) 644–649.
DOI: 10.1016/j.ultsonch.2012.09.007
Google Scholar
[4]
G.K. Ramesha, A.V. Kumara, H.B. Muralidhara, S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, Journal of Colloid Interface Sci. 361 (2011) 270–277.
DOI: 10.1016/j.jcis.2011.05.050
Google Scholar
[5]
J.N. Tiwari, K. Mahesh, N.H. Le, K.C.K.R. Timilsina, R.N. Tiwari, K.S. Kim, Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions, Carbon. 56 (2013) 173–182.
DOI: 10.1016/j.carbon.2013.01.001
Google Scholar
[6]
S.T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, H. Wang, Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interface Sci. 359 (2011) 24–29.
DOI: 10.1016/j.jcis.2011.02.064
Google Scholar
[7]
L. Sun, H. Yu, B. Fugetsu, Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution, Journal of Hazard. Mater. 203 (2012) 101–110.
DOI: 10.1016/j.jhazmat.2011.11.097
Google Scholar
[8]
F. Liu, S. Chung, G. Oh, T.S. Seo, Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal, ACS Appl. Mater. Interfaces. 4 (2012) 922–927.
DOI: 10.1021/am201590z
Google Scholar
[9]
N.N. Bonnia, A.Z. Zanuri, N.A. Asli, N.A. Masdar, S. Ratim, S.M. Yahaya, M.M. Mahat, R. Ramli, Synthesis of Graphene Oxide from Waste Carbon Tyre using Modified Hummer's Method, International Journal of Engineering & Technology. 7 (2018) 352-355
DOI: 10.14419/ijet.v7i4.14.27673
Google Scholar
[10]
R. Ikram, B.M. Jan, W. Ahmad, An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization, Journal of Materials Research and Technology. 9 (2020) 11587–11610.
DOI: 10.1016/j.jmrt.2020.08.050
Google Scholar
[11]
E.H. Sujiono, Zurnansyah, D. Zabrian, M.Y. Dahlan, B.D. Amin, Samnur, J. Agus, Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization, Heliyon. 6 (2020) 1-8.
DOI: 10.1016/j.heliyon.2020.e04568
Google Scholar
[12]
K. Tewatia, A. Sharma, M. Sharma, A. Kumar, Synthesis of Graphene Oxide and its Reduction by Green Reducing Agent, Materials Today: Proceedings, 44 (2020) 3933–3938.
DOI: 10.1016/j.matpr.2020.09.294
Google Scholar
[13]
F. C. Faustina, F. Santoso, Extraction of Fruit Peels of Pometia pinnata and Its Antioxidant and Antimicrobial Activities, Jurnal Pascapanen. 11 (2017) 80.
DOI: 10.21082/jpasca.v11n2.2014.80-88
Google Scholar
[14]
A. Suedee, S. Tewtrakul, P. Panichayupakaranant, Anti-HIV-1 Integrase Compound from Pometia Pinnata Leaves, Pharmaceutical Biology. 51 (2013) 1256–1261.
DOI: 10.3109/13880209.2013.786098
Google Scholar
[15]
N. Thiyagarajulu, S. Arumugam, A.L. Narayanan, T. Mathivanan, R. Renuka, Green Synthesis of Reduced Graphene Nanosheets using Leaf Extract of Tridax procumbens and its Potential In Vitro Biological Activities, Biointerface Research in Applied Chemistry. 11 (2021) 9975-9984.
DOI: 10.33263/briac113.99759984
Google Scholar
[16]
A.U. Nkwoada, A.D. Terna, C.I. Nwoko, Green synthesis of reduced graphene oxide using orange extract for Ni2+ removal, Algerian Journal of Materials Chemistry. 4 (2021) 15─ 25.
Google Scholar
[17]
B.M. Chufa, B.A. Gonfa, T.Y. Anshebo, G.A. Workneh, A Novel and Simplest Green Synthesis Method of Reduced Graphene Oxide Using Methanol Extracted Vernonia Amygdalina: Large-Scale Production, Advances in Condensed Matter Physics. 2021 (2021)1-10.
DOI: 10.1155/2021/6681710
Google Scholar
[18]
O. Akhavan, K. Bijanzad, A. Mirsepah, Synthesis of Graphene from Natural and Industrial Carbonaceous Wastes, RSC Advances. 4 (2014) 20441–20448.
DOI: 10.1039/c4ra01550a
Google Scholar
[19]
P. Parthipan, M.A. Al-Dosary, A.A. Al-Ghamdi, A. Subramaniah, Eco-Friendly Synthesis of Reduced Graphene Oxide as Sustainable Photocatalysts for Removal of Hazardous Organic Dyes, Journal of King Saud University-Science, 33 (2021) 101438.
DOI: 10.1016/j.jksus.2021.101438
Google Scholar
[20]
G. Bhattacharya, S. Sas, S. Wadhwa, A. Mathur, J. Mclaughlin, S.S. Roy, Aloe Vera Assisted Facile Green Synthesis Of Reduced Graphene Oxide For Electrochemical And Dye Removal Applications, RSC Advances Paper, 7 (2017) 26680–26688.
DOI: 10.1039/c7ra02828h
Google Scholar
[21]
D.R. Cooper, B.D. Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, M. Norberto, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental Review of Graphene. Review Article, ISRN Condensed Matter Physics. 2012 (2012) 1-53.
DOI: 10.5402/2012/501686
Google Scholar
[22]
F. T. Johra, J. Lee, W. Jung, Facile and Safe Graphene Preparation on Solution Based Platform, Journal of Industrial and Engineering Chemistry. 1678 (2013) 5.
Google Scholar
[23]
N. M. S. Hidayah, W. W. Liu, C. W. Lai, N. Z. , C. S. Noriman, U. KheHashim, H.C. Lee, Comparison on graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization, AIP Conference Proceedings. 1892 (2017) 150001-150009.
DOI: 10.1063/1.5005764
Google Scholar
[24]
K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Duobonos,. I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Journal of Science. 3 (2004) 306-310.
DOI: 10.1126/science.1102896
Google Scholar
[25]
B. Y. Zhu, S. Murali, X. CaiLi, , , J. W. Suk, J. R. Potts, R.S. Ruoff, Graphene and Graphene Oxide : Synthesis, Properties and Applications, Journal of Advanced Material. 2010 (2010) 3906–3924.
DOI: 10.1002/adma.201001068
Google Scholar
[26]
A. Datar, Y.G. Chung, L.C. Lin, Beyond the BET Analysis: the Surface Area Prediction of Nanoporous Materials Using a Machine Learning Method, The Journal of Physical Chemistry Letters. 8 (2020) 1-18.
DOI: 10.1021/acs.jpclett.0c01518
Google Scholar
[27]
Y. Kuang, X. Zhang, S. Zhou, Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification, Journal of Water (Switzerland). 12 (2020) 1–19.
DOI: 10.3390/w12020587
Google Scholar
[28]
B.M. Mercado-Borrayo, R. Schouwenaars, M.I. Litter, C.V. Montoya-Bautista, , R.M. Ramírez-ZamoraMetallurgical Slag as an Efficient and Economical Adsorbent of Arsenic, Water Reclamation and Sustainability. (2014) 95–114.
DOI: 10.1016/b978-0-12-411645-0.00005-5
Google Scholar
[29]
D. Robati, Pseudo-Second-Order Kinetic Equations for Modeling Adsorption Systems for Removal of Lead Ions Using Multi-Walled Carbon Nanotube, Journal of Nanostructure in Chemistry. 3 (2013) 1-6.
DOI: 10.1186/2193-8865-3-55
Google Scholar
[30]
J. Simonin, On The Comparison of Pseudo-First Order and Pseudo-Second Order Rate Laws in The Modeling Of Adsorption Kinetics, Chemical Engineering Journal. 300 (2016) 254-263.
DOI: 10.1016/j.cej.2016.04.079
Google Scholar
[31]
R. Ragadhita, A.B.D. Nandiyanto, How to Calculate Adsorption Isotherms of Particles Using Two-Parameter Monolayer Adsorption Models and Equations, Indonesian Journal of Science & Technology. 6 (2021) 205-234.
DOI: 10.17509/ijost.v6i1.32354
Google Scholar
[32]
T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, D. Wu, Adsorption of Methylene Blue from Aqueous Solution by Graphene, Colloids and Surfaces B: Biointerfaces. 90 (2013) 197–203.
DOI: 10.1016/j.colsurfb.2011.10.019
Google Scholar
[33]
A. M. Lazim, A. H. Osman, M. Mokhtarom, Absorption Ability of Gamma Irridiated Bacterial Cellulose Hydrogel Using Langmuir and Freundlich Isotherm, Journal Sains Malaysiana, 47 (2018) 715–723.
DOI: 10.17576/jsm-2018-4704-09
Google Scholar
[34]
M. Said, H. A. Hasan, M. T. M. Nor, A.W. Mohammad, Removal of COD, TSS and colour from palm oil mill effluent (POME) using montmorillonite, Desalination and Water Treatment, 57 (2016) 10490–10497.
DOI: 10.1080/19443994.2015.1036778
Google Scholar
[35]
H.S.Y. Akrawi, M.A. Al-Obaidi, C.H. Abdulrahman, Evaluation of Langmuir and Freundlich isotherm equation for Zinc Adsorption in some calcareous soil of Erbil province north of Iraq, IOP Conf. Series: Earth and Environmental Science. 761 (2021) 1-10.
DOI: 10.1088/1755-1315/761/1/012017
Google Scholar