Study of Zinc Oxide Films Growth on Aluminum Nitride and Silicon Substrates: Structural, Optical and Electrical Properties

Article Preview

Abstract:

ZnO films were deposited by magnetron sputtering using RF power supply, in order to study the effect of substrates on quality of the prepared films. Then, growth of the ZnO films on thin AlN buffer layer and Si(100) substrates were characterized using different techniques. The surface morphology was investigated by means of scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The structural properties were investigated via X-ray diffraction (XRD) patterns, Rocking Curve as well as Pole figures. The ZnO films were textured and they had preferred orientation (002) and the crystallinity was better for ZnO/Si in the used growth conditions. The XRD results were confirmed by HRTEM. Optical properties were analyzed by photoluminescence (PL), as well as electrical characteristics were performed by C-V and I-V measurements. The dispersion orientation of these films, as indicated via the FWHM (rocking curves), is small for thin ZnO/Si. These results are considered as hopeful for piezoelectric applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 345)

Pages:

109-121

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.L. Jahan, B. Boyacioglu, A. Chatterjee, Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a gaas quantum dot at finite temperature, Sci Rep-Uk 9 (2019) 15824.

DOI: 10.1038/s41598-019-52190-w

Google Scholar

[2] A. Aydin, A. Sisman, Quantum shape effects and novel thermodynamic behaviors at nanoscale, Phys Lett A 383 (2019) 655-665.

DOI: 10.1016/j.physleta.2019.01.009

Google Scholar

[3] M. Nafees, W. Liaqut, S. Ali, M.A. Shafique, Synthesis of zno/al:Zno nanomaterial: Structural and band gap variation in zno nanomaterial by al doping, APPL Nanoscience 3 (2013) 49-55.

DOI: 10.1007/s13204-012-0067-y

Google Scholar

[4] C.L. Cowles, X. Zhu, Sensitive detection of cardiac biomarker using zns nanoparticles as novel signal transducers, Biosens Bioelectron 30 (2011) 342-346.

DOI: 10.1016/j.bios.2011.09.034

Google Scholar

[5] X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, Zns nanostructures: Synthesis, properties, and applications, Crit Rev Solid State 38 (2013) 57-90.

Google Scholar

[6] S. Premkumar, D. Nataraj, G. Bharathi, S. Ramya, T.D. Thangadurai, Highly responsive ultraviolet sensor based on zns quantum dot solid with enhanced photocurrent, Sci Rep 9 (2019) 18704.

DOI: 10.1038/s41598-019-55097-8

Google Scholar

[7] T. Safarov, B. Kiran, M. Bagirova, A.M. Allahverdiyev, E.S. Abamor, An overview of nanotechnology-based treatment approaches against helicobacter pylori, Expert Rev Anti-Infe 17 (2019) 829-840.

DOI: 10.1080/14787210.2019.1677464

Google Scholar

[8] A.M. Palve, Deposition of zinc sulfide thin films from zinc(ii) thiosemicarbazones as single molecular precursors using aerosol assisted chemical vapor deposition technique, Front Mat 6 (2019) 46.

DOI: 10.3389/fmats.2019.00046

Google Scholar

[9] K. Lin, P. Yao, J. Zhao, S. Guo, F. Tian, Metal nanodroplets catalyzed growth of zns nanowires with a high aspect ratio via long-pulse-width laser ablation in the liquid phase, Mater Lett 203 (2017) 21-23.

DOI: 10.1016/j.matlet.2017.05.119

Google Scholar

[10] M.R. Khanlary, S. alijarahi, A. Reyhani, Growth temperature dependence of vls-grown ultra-long zns nanowires prepared by cvd method, J Theor Appl Phys 12 (2018) 121-126.

DOI: 10.1007/s40094-018-0289-9

Google Scholar

[11] H.J. Yuan, S.S. Xie, D.F. Liu, X.Q. Yan, Z.P. Zhou, L. Ci, J.-X. Wang, Y. Gao, L. Song, L. Liu, W.Y. Zhou, G. Wang, Formation of zns nanostructures by a simple way of thermal evaporation, J Cryst Growth 258 (2003) 225-231.

DOI: 10.1016/s0022-0248(03)01502-1

Google Scholar

[12] V. Gremenok, Microstructure of zno:Er films prepared by magnetron sputtering, J Contemp Phys-Arme+ 57 (2022) 358-362.

DOI: 10.1134/s1068337222040089

Google Scholar

[13] S. Xiong, X. Liu, J. Zhou, Y. Liu, Y. Shen, X. Yin, J. Wu, R. Tao, Y. Fu, H. Duan, Stability studies of zno and aln thin film acoustic wave devices in acid and alkali harsh environments, Rsc Adv 10 (2020) 19178-19184.

DOI: 10.1039/d0ra02448a

Google Scholar

[14] G. Zhang, X.W. Lou, Controlled growth of nico2o4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors, Sci Rep 3 (2013) 1470.

DOI: 10.1038/srep01470

Google Scholar

[15] B. Weng, S. Liu, Z.-R. Tang, Y.-J. Xu, One-dimensional nanostructure based materials for versatile photocatalytic applications, Rsc Adv 4 (2014) 12685-12700.

DOI: 10.1039/c3ra47910b

Google Scholar

[16] B.Assfour, B. Abadllah, M. Kakhia, Synthesis and characterization of zns/pbs quantum dots nanorods array heterostructure, Aerosol Sci Eng (2022).

DOI: 10.1007/s41810-022-00137-6

Google Scholar

[17] S.R. Dhage, A.C. Badgujar, Transparent conducting al:Zno thin films on large area by efficient cylindrical rotating dc magnetron sputtering, J Alloy Compd 763 (2018) 504-511.

DOI: 10.1016/j.jallcom.2018.05.234

Google Scholar

[18] A.C. Badgujar, B.S. Yadav, G.K. Jha, S.R. Dhage, Room temperature sputtered aluminum-doped zno thin film transparent electrode for application in solar cells and for low-band-gap optoelectronic devices, Acs Omega 7 (2022) 14203-14210.

DOI: 10.1021/acsomega.2c00830

Google Scholar

[19] C.P. Gupta, A.K. Singh, P.K. Jain, S.K. Sharma, S. Birla, S. Sancheti, Electrical transport properties of thermally stable n-zno/aln/p-si diode grown using rf sputtering, Mat Sci Semicon Proc 128 (2021) 105734.

DOI: 10.1016/j.mssp.2021.105734

Google Scholar

[20] Z. Shi, D. Wu, T. Xu, Y. Zhang, B. Zhang, Y. Tian, X. Li, G. Du, Improved electrical transport and electroluminescence properties of p-ZnO/n-si heterojunction via introduction of patterned SiO2 intermediate layer, J Phys Chem C 120 (2016) 4504-4510.

DOI: 10.1021/acs.jpcc.5b10689

Google Scholar

[21] M. Wlazło, M. Haras, G. Kołodziej, O. Szawcow, J. Ostapko, W. Andrysiewicz, D. Kharitonov, T. Skotnicki, Piezoelectric response and substrate effect of zno nanowires for mechanical energy harvesting in internet-of-things applications, Mater 15 (2022) 6767.

DOI: 10.20944/preprints202208.0087.v1

Google Scholar

[22] Y. Chen, L. Su, M. Jiang, X. Fang, Switch type pani/zno core-shell microwire heterojunction for uv photodetection, J Mater Sci Technol 105 (2022) 259-265.

DOI: 10.1016/j.jmst.2021.07.031

Google Scholar

[23] T. Ghosh, M. Dutta, D. Basak, Effect of substrate-induced strain on the morphological, electrical, optical and photoconductive properties of rf magnetron sputtered zno thin films, Mater Res Bull 46 (2011) 1039-1044.

DOI: 10.1016/j.materresbull.2011.03.011

Google Scholar

[24] X.S. Du, X. Zeng, B.C. Yang, T. Wang, G.Z. Xie, Y.D. Jiang, The effect of annealing on the crystallinity of zno films, Gongneng Cailiao/ J Funct Mater 39 (2008) 797-798.

Google Scholar

[25] S.N. Fatimah Hasim, M.A. Abdul Hamid, R. Shamsudin, A. Jalar, Synthesis and characterization of zno thin films by thermal evaporation, J J Phys Chem Solids 70 (2009) 1501-1504.

DOI: 10.1016/j.jpcs.2009.09.013

Google Scholar

[26] A. Moulahi, F. Sediri, N. Gharbi, Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties, Mater Res Bull 47 (2012) 667-671.

DOI: 10.1016/j.materresbull.2011.12.027

Google Scholar

[27] B. Abdallah, K. Alnama, F. Nasrallah, Deposition of zns thin films by electron beam evaporation technique, effect of thickness on the crystallographic and optical properties, Mod Phys Lett B 33 (2019) 1950034.

DOI: 10.1142/s0217984919500349

Google Scholar

[28] B. Abdallah, R. Hussin, W. Zetoune, Effect of etched silicon substrate on structural, morphological, and optical properties of deposited zno films via dc sputtering, Aerosol Sci Eng 6 (2022) 30-44.

DOI: 10.1007/s41810-021-00122-5

Google Scholar

[29] B.L. Zhu, C. Wang, T. Xie, J. Wu, X. Shi, Highly transparent conductive zno films prepared by reactive rf sputtering with zn/zno composite target, Appl Phys A 127 (2021).

DOI: 10.1007/s00339-021-04826-w

Google Scholar

[30] S. Rahmane, B. Abdallah, A. Soussou, E. Gautron, P.Y. Jouan, L. Le Brizoual, N. Barreau, A. Soltani, M.A. Djouadi, Epitaxial growth of zno thin films on aln substrates deposited at low temperature by magnetron sputtering, Phys Status Solidi A 207 (2010) 1604-1608.

DOI: 10.1002/pssa.200983776

Google Scholar

[31] B. Abdallah, S. Al-Khawaja, Optical and electrical characterization of (002)-preferentially oriented n-zno/p-si heterostructure, ACTA PHYS POL A 128 (2015) 283-288.

DOI: 10.12693/aphyspola.128.283

Google Scholar

[32] G. Sánchez, B. Abdallah, P. Tristant, C. Dublanche-Tixier, M.A. Djouadi, M.P. Besland, P.Y. Jouan, A. Bologna Alles, Microstructure and mechanical properties of aln films obtained by plasma enhanced chemical vapor deposition, J Mater Sci 44 (2009) 6125-6134.

DOI: 10.1007/s10853-009-3847-3

Google Scholar

[33] L. Eunju, J. Park, M. Yim, Y. Kim, G. Yoon, Characteristics of piezoelectric zno/aln−stacked flexible nanogenerators for energy harvesting applications, Appl Phys Lett 106 (2015).

DOI: 10.1063/1.4904270

Google Scholar

[34] S. Al-Khawaja, B. Abdallah, S. Abou Shaker, M. Kakhia, Thickness effect on stress, structural, electrical and sensing properties of (0 0 2) preferentially oriented undoped zno thin films, Compos Interface 22 (2015) 221-231.

DOI: 10.1080/15685543.2015.1002259

Google Scholar

[35] F.F. Vidor, G. Wirth, F. Assion, K. Wolff, U. Hilleringmann, Characterization and analysis of the hysteresis in a zno nanoparticle thin-film transistor, IEEE T Nanotechnol 12 (2013) 296-303.

DOI: 10.1109/tnano.2012.2236891

Google Scholar

[36] B. Abdallah, A.K. Jazmati, R. Refaai, Oxygen effect on structural and optical properties of zno thin films deposited by rf magnetron sputtering, Mater Res 20 (2017) 607-612.

DOI: 10.1590/1980-5373-mr-2016-0478

Google Scholar

[37] M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering, Thin Solid Films 515 (2007) 6562-6566.

DOI: 10.1016/j.tsf.2006.11.151

Google Scholar

[38] P. Prathap, N. Revathi, Y.P.V. Subbaiah, K.T.R. Reddy, Thickness effect on the microstructure, morphology and optoelectronic properties of zns films, J Phys: Cond Mat 20 (2008) 035205.

DOI: 10.1088/0953-8984/20/03/035205

Google Scholar

[39] J. Wang, L. Gao, Wet chemical synthesis of ultralong and straight single-crystalline zno nanowires and their excellent uv emission properties, J Mater Chem 13 (2003) 2551-2554.

DOI: 10.1039/b307565f

Google Scholar

[40] Y.W. Ke, Q.F. Qing, W.N. Wang, C. Zhou, W.J. Huang, G.L. Jin, Q.R. Lv, M.L. Yan, P.Z. Qi, M.Z. Han, Nfluence of nitrogen on the defects and magnetism of zno:N thin films, J Appl Phys. 108 (2010) 063530.

Google Scholar

[41] C.C. Ting, Structure, morphology, and optical properties of the compact, vertically-aligned zno nanorod thin films by the solution-growth technique, in: O. Yalçin (Ed.), Nanorods, Rijeka: InTech, 2012, pp.33-50.

DOI: 10.5772/35533

Google Scholar

[42] F. Engelmark, J. Westlinder, G.F. Iriarte, I.V. Katardjiev, J. Olsson, Electrical characterization of aln mis and mim structures, IEEE T Electron Dev 50 (2003) 1214 - 1219.

DOI: 10.1109/ted.2003.813231

Google Scholar

[43] B. Abdallah, M.D. Zidan, A. Allahham, Syntheses, structural and nonlinear optical characteristics of zno films using z-scan technique, Silicon 13 (2021) 4139-4146.

DOI: 10.1007/s12633-020-00702-z

Google Scholar

[44] D. Misra, High k dielectrics on high-mobility substrates: The interface!, The Elec Soc Interface 20 (2011) 47.

DOI: 10.1149/2.f05114if

Google Scholar

[45] F. Chaabouni, M. Abaab, B. Rezig, Characterization of n-zno/p-si films grown by magnetron sputtering, Superlattice Microst 39 (2006) 171-178.

DOI: 10.1016/j.spmi.2005.08.070

Google Scholar