[1]
K.L. Jahan, B. Boyacioglu, A. Chatterjee, Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a gaas quantum dot at finite temperature, Sci Rep-Uk 9 (2019) 15824.
DOI: 10.1038/s41598-019-52190-w
Google Scholar
[2]
A. Aydin, A. Sisman, Quantum shape effects and novel thermodynamic behaviors at nanoscale, Phys Lett A 383 (2019) 655-665.
DOI: 10.1016/j.physleta.2019.01.009
Google Scholar
[3]
M. Nafees, W. Liaqut, S. Ali, M.A. Shafique, Synthesis of zno/al:Zno nanomaterial: Structural and band gap variation in zno nanomaterial by al doping, APPL Nanoscience 3 (2013) 49-55.
DOI: 10.1007/s13204-012-0067-y
Google Scholar
[4]
C.L. Cowles, X. Zhu, Sensitive detection of cardiac biomarker using zns nanoparticles as novel signal transducers, Biosens Bioelectron 30 (2011) 342-346.
DOI: 10.1016/j.bios.2011.09.034
Google Scholar
[5]
X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, Zns nanostructures: Synthesis, properties, and applications, Crit Rev Solid State 38 (2013) 57-90.
Google Scholar
[6]
S. Premkumar, D. Nataraj, G. Bharathi, S. Ramya, T.D. Thangadurai, Highly responsive ultraviolet sensor based on zns quantum dot solid with enhanced photocurrent, Sci Rep 9 (2019) 18704.
DOI: 10.1038/s41598-019-55097-8
Google Scholar
[7]
T. Safarov, B. Kiran, M. Bagirova, A.M. Allahverdiyev, E.S. Abamor, An overview of nanotechnology-based treatment approaches against helicobacter pylori, Expert Rev Anti-Infe 17 (2019) 829-840.
DOI: 10.1080/14787210.2019.1677464
Google Scholar
[8]
A.M. Palve, Deposition of zinc sulfide thin films from zinc(ii) thiosemicarbazones as single molecular precursors using aerosol assisted chemical vapor deposition technique, Front Mat 6 (2019) 46.
DOI: 10.3389/fmats.2019.00046
Google Scholar
[9]
K. Lin, P. Yao, J. Zhao, S. Guo, F. Tian, Metal nanodroplets catalyzed growth of zns nanowires with a high aspect ratio via long-pulse-width laser ablation in the liquid phase, Mater Lett 203 (2017) 21-23.
DOI: 10.1016/j.matlet.2017.05.119
Google Scholar
[10]
M.R. Khanlary, S. alijarahi, A. Reyhani, Growth temperature dependence of vls-grown ultra-long zns nanowires prepared by cvd method, J Theor Appl Phys 12 (2018) 121-126.
DOI: 10.1007/s40094-018-0289-9
Google Scholar
[11]
H.J. Yuan, S.S. Xie, D.F. Liu, X.Q. Yan, Z.P. Zhou, L. Ci, J.-X. Wang, Y. Gao, L. Song, L. Liu, W.Y. Zhou, G. Wang, Formation of zns nanostructures by a simple way of thermal evaporation, J Cryst Growth 258 (2003) 225-231.
DOI: 10.1016/s0022-0248(03)01502-1
Google Scholar
[12]
V. Gremenok, Microstructure of zno:Er films prepared by magnetron sputtering, J Contemp Phys-Arme+ 57 (2022) 358-362.
DOI: 10.1134/s1068337222040089
Google Scholar
[13]
S. Xiong, X. Liu, J. Zhou, Y. Liu, Y. Shen, X. Yin, J. Wu, R. Tao, Y. Fu, H. Duan, Stability studies of zno and aln thin film acoustic wave devices in acid and alkali harsh environments, Rsc Adv 10 (2020) 19178-19184.
DOI: 10.1039/d0ra02448a
Google Scholar
[14]
G. Zhang, X.W. Lou, Controlled growth of nico2o4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors, Sci Rep 3 (2013) 1470.
DOI: 10.1038/srep01470
Google Scholar
[15]
B. Weng, S. Liu, Z.-R. Tang, Y.-J. Xu, One-dimensional nanostructure based materials for versatile photocatalytic applications, Rsc Adv 4 (2014) 12685-12700.
DOI: 10.1039/c3ra47910b
Google Scholar
[16]
B.Assfour, B. Abadllah, M. Kakhia, Synthesis and characterization of zns/pbs quantum dots nanorods array heterostructure, Aerosol Sci Eng (2022).
DOI: 10.1007/s41810-022-00137-6
Google Scholar
[17]
S.R. Dhage, A.C. Badgujar, Transparent conducting al:Zno thin films on large area by efficient cylindrical rotating dc magnetron sputtering, J Alloy Compd 763 (2018) 504-511.
DOI: 10.1016/j.jallcom.2018.05.234
Google Scholar
[18]
A.C. Badgujar, B.S. Yadav, G.K. Jha, S.R. Dhage, Room temperature sputtered aluminum-doped zno thin film transparent electrode for application in solar cells and for low-band-gap optoelectronic devices, Acs Omega 7 (2022) 14203-14210.
DOI: 10.1021/acsomega.2c00830
Google Scholar
[19]
C.P. Gupta, A.K. Singh, P.K. Jain, S.K. Sharma, S. Birla, S. Sancheti, Electrical transport properties of thermally stable n-zno/aln/p-si diode grown using rf sputtering, Mat Sci Semicon Proc 128 (2021) 105734.
DOI: 10.1016/j.mssp.2021.105734
Google Scholar
[20]
Z. Shi, D. Wu, T. Xu, Y. Zhang, B. Zhang, Y. Tian, X. Li, G. Du, Improved electrical transport and electroluminescence properties of p-ZnO/n-si heterojunction via introduction of patterned SiO2 intermediate layer, J Phys Chem C 120 (2016) 4504-4510.
DOI: 10.1021/acs.jpcc.5b10689
Google Scholar
[21]
M. Wlazło, M. Haras, G. Kołodziej, O. Szawcow, J. Ostapko, W. Andrysiewicz, D. Kharitonov, T. Skotnicki, Piezoelectric response and substrate effect of zno nanowires for mechanical energy harvesting in internet-of-things applications, Mater 15 (2022) 6767.
DOI: 10.20944/preprints202208.0087.v1
Google Scholar
[22]
Y. Chen, L. Su, M. Jiang, X. Fang, Switch type pani/zno core-shell microwire heterojunction for uv photodetection, J Mater Sci Technol 105 (2022) 259-265.
DOI: 10.1016/j.jmst.2021.07.031
Google Scholar
[23]
T. Ghosh, M. Dutta, D. Basak, Effect of substrate-induced strain on the morphological, electrical, optical and photoconductive properties of rf magnetron sputtered zno thin films, Mater Res Bull 46 (2011) 1039-1044.
DOI: 10.1016/j.materresbull.2011.03.011
Google Scholar
[24]
X.S. Du, X. Zeng, B.C. Yang, T. Wang, G.Z. Xie, Y.D. Jiang, The effect of annealing on the crystallinity of zno films, Gongneng Cailiao/ J Funct Mater 39 (2008) 797-798.
Google Scholar
[25]
S.N. Fatimah Hasim, M.A. Abdul Hamid, R. Shamsudin, A. Jalar, Synthesis and characterization of zno thin films by thermal evaporation, J J Phys Chem Solids 70 (2009) 1501-1504.
DOI: 10.1016/j.jpcs.2009.09.013
Google Scholar
[26]
A. Moulahi, F. Sediri, N. Gharbi, Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties, Mater Res Bull 47 (2012) 667-671.
DOI: 10.1016/j.materresbull.2011.12.027
Google Scholar
[27]
B. Abdallah, K. Alnama, F. Nasrallah, Deposition of zns thin films by electron beam evaporation technique, effect of thickness on the crystallographic and optical properties, Mod Phys Lett B 33 (2019) 1950034.
DOI: 10.1142/s0217984919500349
Google Scholar
[28]
B. Abdallah, R. Hussin, W. Zetoune, Effect of etched silicon substrate on structural, morphological, and optical properties of deposited zno films via dc sputtering, Aerosol Sci Eng 6 (2022) 30-44.
DOI: 10.1007/s41810-021-00122-5
Google Scholar
[29]
B.L. Zhu, C. Wang, T. Xie, J. Wu, X. Shi, Highly transparent conductive zno films prepared by reactive rf sputtering with zn/zno composite target, Appl Phys A 127 (2021).
DOI: 10.1007/s00339-021-04826-w
Google Scholar
[30]
S. Rahmane, B. Abdallah, A. Soussou, E. Gautron, P.Y. Jouan, L. Le Brizoual, N. Barreau, A. Soltani, M.A. Djouadi, Epitaxial growth of zno thin films on aln substrates deposited at low temperature by magnetron sputtering, Phys Status Solidi A 207 (2010) 1604-1608.
DOI: 10.1002/pssa.200983776
Google Scholar
[31]
B. Abdallah, S. Al-Khawaja, Optical and electrical characterization of (002)-preferentially oriented n-zno/p-si heterostructure, ACTA PHYS POL A 128 (2015) 283-288.
DOI: 10.12693/aphyspola.128.283
Google Scholar
[32]
G. Sánchez, B. Abdallah, P. Tristant, C. Dublanche-Tixier, M.A. Djouadi, M.P. Besland, P.Y. Jouan, A. Bologna Alles, Microstructure and mechanical properties of aln films obtained by plasma enhanced chemical vapor deposition, J Mater Sci 44 (2009) 6125-6134.
DOI: 10.1007/s10853-009-3847-3
Google Scholar
[33]
L. Eunju, J. Park, M. Yim, Y. Kim, G. Yoon, Characteristics of piezoelectric zno/aln−stacked flexible nanogenerators for energy harvesting applications, Appl Phys Lett 106 (2015).
DOI: 10.1063/1.4904270
Google Scholar
[34]
S. Al-Khawaja, B. Abdallah, S. Abou Shaker, M. Kakhia, Thickness effect on stress, structural, electrical and sensing properties of (0 0 2) preferentially oriented undoped zno thin films, Compos Interface 22 (2015) 221-231.
DOI: 10.1080/15685543.2015.1002259
Google Scholar
[35]
F.F. Vidor, G. Wirth, F. Assion, K. Wolff, U. Hilleringmann, Characterization and analysis of the hysteresis in a zno nanoparticle thin-film transistor, IEEE T Nanotechnol 12 (2013) 296-303.
DOI: 10.1109/tnano.2012.2236891
Google Scholar
[36]
B. Abdallah, A.K. Jazmati, R. Refaai, Oxygen effect on structural and optical properties of zno thin films deposited by rf magnetron sputtering, Mater Res 20 (2017) 607-612.
DOI: 10.1590/1980-5373-mr-2016-0478
Google Scholar
[37]
M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering, Thin Solid Films 515 (2007) 6562-6566.
DOI: 10.1016/j.tsf.2006.11.151
Google Scholar
[38]
P. Prathap, N. Revathi, Y.P.V. Subbaiah, K.T.R. Reddy, Thickness effect on the microstructure, morphology and optoelectronic properties of zns films, J Phys: Cond Mat 20 (2008) 035205.
DOI: 10.1088/0953-8984/20/03/035205
Google Scholar
[39]
J. Wang, L. Gao, Wet chemical synthesis of ultralong and straight single-crystalline zno nanowires and their excellent uv emission properties, J Mater Chem 13 (2003) 2551-2554.
DOI: 10.1039/b307565f
Google Scholar
[40]
Y.W. Ke, Q.F. Qing, W.N. Wang, C. Zhou, W.J. Huang, G.L. Jin, Q.R. Lv, M.L. Yan, P.Z. Qi, M.Z. Han, Nfluence of nitrogen on the defects and magnetism of zno:N thin films, J Appl Phys. 108 (2010) 063530.
Google Scholar
[41]
C.C. Ting, Structure, morphology, and optical properties of the compact, vertically-aligned zno nanorod thin films by the solution-growth technique, in: O. Yalçin (Ed.), Nanorods, Rijeka: InTech, 2012, pp.33-50.
DOI: 10.5772/35533
Google Scholar
[42]
F. Engelmark, J. Westlinder, G.F. Iriarte, I.V. Katardjiev, J. Olsson, Electrical characterization of aln mis and mim structures, IEEE T Electron Dev 50 (2003) 1214 - 1219.
DOI: 10.1109/ted.2003.813231
Google Scholar
[43]
B. Abdallah, M.D. Zidan, A. Allahham, Syntheses, structural and nonlinear optical characteristics of zno films using z-scan technique, Silicon 13 (2021) 4139-4146.
DOI: 10.1007/s12633-020-00702-z
Google Scholar
[44]
D. Misra, High k dielectrics on high-mobility substrates: The interface!, The Elec Soc Interface 20 (2011) 47.
DOI: 10.1149/2.f05114if
Google Scholar
[45]
F. Chaabouni, M. Abaab, B. Rezig, Characterization of n-zno/p-si films grown by magnetron sputtering, Superlattice Microst 39 (2006) 171-178.
DOI: 10.1016/j.spmi.2005.08.070
Google Scholar