[1]
J. Li, Q. Chen, S. Yang, K. Yan, H. Zhang, and X. Liu, "Electrical transport properties and enhanced broad-temperature-range low field magnetoresistance in LCMO ceramics by Sm2O3 adding," J. Alloys Compd., 790(2019) 240–247.
DOI: 10.1016/j.jallcom.2019.03.169
Google Scholar
[2]
I. Z. Al-Yahmadi et al., "Giant magnetocaloric effect and magnetic properties of nanocomposites of manganite Nd1-xSrxMnO3 (0.0 ≤ x ≤ 0.8) synthesized using modified sol-gel method," J. Alloys Compd., 857(2021) 157566.
DOI: 10.1016/j.jallcom.2020.157566
Google Scholar
[3]
M. Arifin, N. Ibrahim, Z. Mohamed, A. K. Yahya, N. A. Khan, and M. N. Khan, "Revival of Metal-Insulator and Ferromagnetic-Paramagnetic Transitions by Ni Substitution at Mn Site in Charge-Ordered Monovalent Doped Nd0.75Na0.25MnO3Manganites," J. Supercond. Nov. Magn., 31(2018) 2851–2868.
DOI: 10.1007/s10948-017-4521-7
Google Scholar
[4]
M. A. Dar and D. Varshney, "Microstructural properties, electrical behavior and low field magnetoresistance of (1-x)La0.67Sr0.33MnO3 (LSMO)+(x)Ni0.5Zn0.5Fe2O4 (NZFO) composites," Solid State Commun., 224(2015) 24–33.
DOI: 10.1016/j.ssc.2015.10.002
Google Scholar
[5]
J. Makni-Chakroun, R. M'nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Chniba-Boudjada, and A. Cheikhrouhou, "Effect of A-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites," Chem. Phys. Lett.,707(2018) 61–70.
DOI: 10.1016/j.cplett.2018.07.039
Google Scholar
[6]
L. N. et. al. Lau, "Effect of NiO Nanoparticle Addition on the Structural, Microstructural, Magnetic, Electrical, and Magneto-Transport Properties of La0.67Ca0.33MnO3 Nanocomposites," coatings, 11(2021)1–14.
Google Scholar
[7]
D. Zhao et al., "A-site defects in LaSrMnO3 perovskite-based catalyst promoting NOx storage and reduction for lean-burn exhausts," J. Rare Earths, 39(2020) 959–968.
DOI: 10.1016/j.jre.2020.04.015
Google Scholar
[8]
T. M. Abd Allah, A. Elfalaky, and M. H. Ghozza, "Effect of sintering on formation, structure, magnetic and dielectric properties of nanocrystalline La0.1Ca0.9MnO3 perovskite," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 281(2022) 115749.
DOI: 10.1016/j.mseb.2022.115749
Google Scholar
[9]
H. Li et al., "A-site K-doping to enhance room-temperature TCR of polycrystalline La0.8Sr0.2-xKxMnO3 ceramics," J. Alloys Compd., 847(2020)156417
DOI: 10.1016/j.jallcom.2020.156417
Google Scholar
[10]
L. N. Lau et al., "Structural, magnetic and magnetotr.ansport properties of sol-gel synthesized La0.67Ca0.33MnO3:TiO2 nanocomposite," Solid State Phenom., 307(2020) 9–14.
Google Scholar
[11]
K. Das, B. Satpati, and I. Das, "The effect of artificial grain boundaries on magneto-transport properties of charge ordered-ferromagnetic nanocomposites," RSC Adv., 5(2015) 27338–27346.
DOI: 10.1039/c5ra00373c
Google Scholar
[12]
C. S. Xiong et al., "Low-field transport properties of (1-x)La0.7Ca0.2Sr0.1MnO3+x(ZnO) composites," Phys. B Condens. Matter, 403(2008) 3266–3270.
Google Scholar
[13]
Y. Liu, T. Sun, G. Dong, S. Zhang, and X. Liu, "Electrical conduction in La0.85Sr0.15MnO3:Agx (0 ≤ x ≤ 0.5) ceramics with large room-temperature TCR," Ceram. Int., 45(2019) 24070–24077.
DOI: 10.1016/j.ceramint.2019.08.113
Google Scholar
[14]
P. Kameli, H. Salamati, M. Eshraghi, and M. R. Mohammadizadeh, "The effect of TiO2 doping on the structure and magnetic and magnetotransport properties of La0.75Sr0.25MnO3 composite," J. Appl. Phys., 98(2005) 1–5.
DOI: 10.1063/1.2032614
Google Scholar
[15]
T. Sun, J. Jiang, Q. Chen, and X. Liu, "Improvement of room-temperature TCR and MR in polycrystalline La0.67(Ca0.27Sr0.06)MnO3 ceramics by Ag2O doping," Ceram. Int., 44(2018) 9865–9874.
DOI: 10.1016/j.ceramint.2018.02.234
Google Scholar
[16]
E. C. Devi and S. D. Singh, "Manifestation of Magnetic Characteristics of Zinc Ferrite Nanoparticles Using the Langevin Function," J. Supercond. Nov. Magn., 34(2021)617–622.
DOI: 10.1007/s10948-020-05732-7
Google Scholar