Investigation of Dependence of Magnetic Properties on Sintering Temperature of Eu1.85Ce0.15CuO4+α-δ Prepared by Sol-Gel Method

Article Preview

Abstract:

Differences in particle size can affect the magnetic properties of superconductors. At the nanoscale, superconductors have different magnetic properties than those at the micro or submicron size. The difference in particle size in superconducting materials can be obtained by giving the sintering temperature difference. In this work, we focus only on the magnetic properties in Eu1.85Ce0.15CuO4+α-δ (ECCO) in the optimal-doped regime prepared by the sol-gel method with various sintering temperatures 700 °C, 800 °C and 900 ° C sizes with an annealing temperature 800 °C to obtain different particle. The lattice parameters and crystallite size were obtained using XRD. Based on the XRD results, the higher the sintering temperature variation, the larger the crystallite size produced with lattice distortion and expansion with a decrease in particle size. The magnetic properties of these materials have been investigated using a superconducting quantum interference device (SQUID) at temperatures between 2 K and 30 K with the applied field at 5 Oe. Based on the SQUID measurement, the magnetic properties of samples sintering at 700 °C and 800 °C were found to be ferromagnetic-like behaviour, while sintering at 900 °C was found to be paramagnetic with no trace of the superconductivity phase. The differences response of magnetic properties can be associated with the effect of the differences size of the crystallites in each material, that can relate to uncompensated spins produced by the surface effect.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 345)

Pages:

101-106

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yin, H. Liu, L. Xie, T. Su, M. Teng and X. Li, Coexistence of superconductivity and ferromagnetism in La2-xSrxCuO4 nanoparticles, J. Phys. Chem. C, (2013) 3028–3035.

Google Scholar

[2] E. Batsaikhan, C. H. Lee, H. Hsu, C. M. Wu, J. C. Peng, M. H. W. H. Ma, Li. Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect. ACS Omega, 5(8) (2020) 3849–3856.

DOI: 10.1021/acsomega.9b02913

Google Scholar

[3] S. Winarsih, F. Budiman, H. Tanaka, T. Adachi, A. Koda, Y. Horibe, B. Kurniawan, I. Watanabe, Risdiana. Observation of Cu Spin Fluctuations in High-Tc Cuprate Superconductor Nanoparticles Investigated by Muon Spin Relaxation. Nanomaterials. 11(12):3450. (2021) 1-10.

DOI: 10.3390/nano11123450

Google Scholar

[4] Y. Maryati, A. I. Hanifah, M. A. B. Subardhi, E. A. Rahayu, Y. R. Tayubi, M. Manawan, T. Saragi and Risdiana. The effect of heating treatment in electron doped superconductor Eu1.85Ce0.15CuO4+α-δ. J. Phys. Conf. Ser. 1080(1) (2018) 12-22

DOI: 10.1088/1742-6596/1080/1/012022

Google Scholar

[5] Risdiana, M. Saputri, M. F. Sobari, A. I. Hanifah, W. A. Somantri, T. Saragi. Structural and Magnetic Properties of n-type Superconductor Eu2-xCexCuO4+α-δ. IOP Conf. Ser. Mater. Sci. Eng. 196 (2017) 2–6.

DOI: 10.1088/1757-899x/196/1/012012

Google Scholar

[6] Y. Li, J. Huang, L. Cao, J. Wu, J. Fei. Optical properties of La2CuO4 and La2-xCaxCuO4 crystallites in UV—vis –NIR region synthesized by sol–gel process. Mater. Charact, 64 (2012), 36–42.

DOI: 10.1016/j.matchar.2011.11.015

Google Scholar

[7] Risdiana, T. Adachi, N. Oki, Y. Koike. Muon spin relaxation study of the Cu spin dynamics in electron-doped high-Tc superconductor Pr0.86LaCe0.14Cu1−yZnyO4. Physica Review B. 82(1), 014506 (2010) 1-6.

DOI: 10.1016/j.physb.2005.11.059

Google Scholar

[8] A. Punnoose, H. Magnone, M. S. Seehra, J. Bonevich. Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. J. Phys. Rev. B, 64(17) (2001) 1-8.

DOI: 10.1103/physrevb.64.174420

Google Scholar

[9] Ayyub P, Palkar V R, Chattopadhyay S, Multani M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B, 51(9) (1995) 6135−6138.

DOI: 10.1103/physrevb.51.6135

Google Scholar

[10] S. Banerjee, A. Datta, A. Bhaumik, D. Chakravorty. Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions. J. Appl. Phys. 112(10) (2012) 1-7.

Google Scholar

[11] Z. H. Zhu, D. Q. Gao, C. H. Dong, G. J. Yang, J. Zhang, J. L. Zhang, Z. H. Shi, H. Gao, H. G. Luo, D. S. Xue. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles. Phys. Chem. Chem. Phys. 14 (2012) 3859−3863.

DOI: 10.1039/c2cp23046a

Google Scholar

[12] S. Blundell, Magnetism in Condensed Matter, Oxford; New York: Oxford University Press, (2001).

Google Scholar

[13] S. K. Hasanain, N. Akhtar, A. Mumtaz. Particle size dependence of the superconductivity and ferromagnetism in YBCO nanoparticles. J Nanopart Res. 13 (2011) 1953–1960.

DOI: 10.1007/s11051-010-9947-9

Google Scholar

[14] J. S. Higgins, Y. Dagan, M. C. Barr, B. D. Weaver and R. L. Greene. Role of Oxygen in the Electron-doped Superconducting Cuprates. Physica Review B. 73(10) (2006) 1-5.

DOI: 10.1103/physrevb.73.104510

Google Scholar