[1]
J. Steinlechner, I.W. Martin, A.S. Bell, J. Hough, M. Fletcher, P.G. Murray, R. Robie, S. Rowan, R. Schnabel, Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing, Phys. Rev. Lett. 120 (2018) 263602.
DOI: 10.1103/physrevlett.120.263602
Google Scholar
[2]
T. Goossens, C. Van Hoof, Thin-film interference filters illuminated by tilted apertures, Appl. Opt. 59 (2020) A112.
DOI: 10.1364/ao.59.00a112
Google Scholar
[3]
K. Nikolaidou, P.G.M. Condelipes, C.R.F. Caneira, M. Krack, P.M. Fontes, H.M. Oliveira, M. Kovačič, J. Krč, M. Topič, S. Cardoso, P.P. Freitas, V. Chu, J.P. Conde, Monolithically integrated optical interference and absorption filters on thin film amorphous silicon photosensors for biological detection, Sensors and Actuators B: Chemical. 356 (2022) 131330.
DOI: 10.1016/j.snb.2021.131330
Google Scholar
[4]
L.-C. Kuo, H.-W. Pan, C.-L. Chang, S. Chao, Low cryogenic mechanical loss composite silica thin film for low thermal noise dielectric mirror coatings, Opt. Lett. 44 (2019) 247.
DOI: 10.1364/ol.44.000247
Google Scholar
[5]
C. Christensen, R. de Reus, S. Bouwstra, Tantalum oxide thin films as protective coatings for sensors, J. Micromech. Microeng. 9 (1999) 113–118.
DOI: 10.1088/0960-1317/9/2/003
Google Scholar
[6]
T. Ștefanov, H.V.R. Maraka, P. Meagher, J. Rice, W. Sillekens, D.J. Browne, Thin film metallic glass broad-spectrum mirror coatings for space telescope applications, Journal of Non-Crystalline Solids: X. 7 (2020) 100050.
DOI: 10.1016/j.nocx.2020.100050
Google Scholar
[7]
D.K. Dhruv, P.B. H, N.V. Patel, Growth of flash evaporated ZnIn2Se4 thin films, Journal of Applied Sciences and Engineering Research. 3 (2014).
Google Scholar
[8]
D.K. Dhruv, B.H. Patel, S.D. Dhruv, P.B. Patel, U.B. Trivedi, N. Agrawal, Synthesis and microstructural characterization of bulk ZnIn2Se4, Materials Today: Proceedings. (2023).
DOI: 10.1016/j.matpr.2023.01.199
Google Scholar
[9]
D. Dhruv, B. Patel, Significance of substrate temperatures on the electrical properties of flash evaporated polycrystalline ZnIn2Se4 thin films, Significance. 3 (2015).
Google Scholar
[10]
N. Agrawal, M. Sarkar, P. Nagar, D.K. Dhruv, Structural and optical properties of Fe doped InSb bulk systems, Materials Today: Proceedings. 55 (2022) 39–41.
DOI: 10.1016/j.matpr.2021.12.098
Google Scholar
[11]
N. Agrawal, M. Sarkar, D.K. Dhruv, Electrical and magnetotransport properties of In0.95Mn0.05Sb film, Materials Today: Proceedings. 59 (2022) 1621–1624.
DOI: 10.1016/j.matpr.2022.03.321
Google Scholar
[12]
D.K. Dhruv, B.H. Patel, Fabrication and electrical characterization of Al/p-ZnIn2Se4 thin film Schottky diode structure, Materials Science in Semiconductor Processing. 54 (2016).
DOI: 10.1016/j.mssp.2016.06.012
Google Scholar
[13]
D.K. Dhruv, B.H. Patel, D. Lakshminarayana, Fabrication and electrical characterization of p-ZnIn2Se4/n-Si heterojunction diode structure, Materials Research Innovations. 20 (2016).
DOI: 10.1080/14328917.2015.1131919
Google Scholar
[14]
S.D. Dhruv, D.K. Dhruv, Anomalous current–voltage and impedance behaviour in heterojunction diode, Materials Today: Proceedings. 55 (2022) A1–A6.
DOI: 10.1016/j.matpr.2022.04.312
Google Scholar
[15]
D.K. Dhruv, B.H. Patel, N. Agrawal, R. Banerjee, S.D. Dhruv, P.B. Patel, V. Patel, Synthesis, electrical transport mechanisms and photovoltaic characteristics of p-ZnIn2Se4/n-CdTe thin film heterojunction, J Mater Sci: Mater Electron. (2022).
DOI: 10.1007/s10854-022-08755-z
Google Scholar
[16]
D.K. Dhruv, S.D. Dhruv, N. Agrawal, P.B. Patel, Fabrication and transport properties of thermally evaporated cadmium selenide thin films for photovoltaic applications, Materials Today: Proceedings. 55 (2022) 67–72.
DOI: 10.1016/j.matpr.2021.12.173
Google Scholar
[17]
D.K. Dhruv, A. Nowicki, B.H. Patel, V.D. Dhamecha, Memory switching characteristics in amorphous ZnIn2Se4 thin films, Surface Engineering. 31 (2015).
DOI: 10.1179/1743294415y.0000000001
Google Scholar
[18]
V. Dhamecha, B. Patel, D. Dhruv, A. Nowicki, Resistive switching memory effects in chalcogenide semiconductor ZnGa2Se4 thin films, Surface Engineering. 36 (2020).
DOI: 10.1080/02670844.2019.1625505
Google Scholar
[19]
V. Patel, B. Patel, D. Dhruv, V. Dhamecha, A. Nowicki, Bipolar resistive switching behavior in Pt/Zn1−xMgxO/pyrographite/Pt structure for memory application, J Mater Sci: Mater Electron. (2022).
DOI: 10.1007/s10854-022-08921-3
Google Scholar
[20]
P. Solanki, M. Vala, D. Dhruv, S.V. Bhatt, B. Kataria, Resistive switching behaviour of novel GdMnO3-based heterostructures, Surfaces and Interfaces. 35 (2022) 102474.
DOI: 10.1016/j.surfin.2022.102474
Google Scholar
[21]
S.A.-J. Jassim, A.A.R.A. Zumaila, G.A.A. Al Waly, Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation, Results in Physics. 3 (2013) 173–178.
DOI: 10.1016/j.rinp.2013.08.003
Google Scholar
[22]
N. Tigau, V. Ciupina, G. Prodan, The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films, Journal of Crystal Growth. 277 (2005) 529–535.
DOI: 10.1016/j.jcrysgro.2005.01.056
Google Scholar
[23]
Mostafa.I. Abd-Elrahman, Mohmed.M. Hafiz, On thickness and annealing dependence of optical properties of Te67.5Ga2.5As30 thin film as optoelectronic material, Journal of Alloys and Compounds. 551 (2013) 562–567.
DOI: 10.1016/j.jallcom.2012.11.001
Google Scholar
[24]
N. kumar, U. Parihar, R. Kumar, K. J. Patel, C. J. Panchal, N. Padha, Effect of Film Thickness on Optical Properties of Tin Selenide Thin Films Prepared by Thermal Evaporation for Photovoltaic Applications, MATERIALS. 2 (2012) 41–45.
DOI: 10.5923/j.materials.20120201.08
Google Scholar
[25]
R. Sathyamoorthy, C. Sharmila, K. Natarajan, S. Velumani, Influence of annealing on structural and optical properties of Zn3P2 thin films, Materials Characterization. 58 (2007) 745–749.
DOI: 10.1016/j.matchar.2006.11.015
Google Scholar
[26]
K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Influence of post-deposition heat treatment on optical properties derived from UV–vis of cadmium telluride (CdTe) thin films deposited on amorphous substrate, Applied Surface Science. 344 (2015) 89–100.
DOI: 10.1016/j.apsusc.2015.03.095
Google Scholar
[27]
M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.F. Elhady, A.A. Abuelwafa, Optical Properties of Nano 5,10,15,20-Tetraphenyl-21H,23H-Prophyrin Nickel (II) Thin Films, Current Applied Physics. 12 (2012) 1178–1184.
DOI: 10.1016/j.cap.2012.02.051
Google Scholar
[28]
C. Li, J.H. Hsieh, J.C. Cheng, C.C. Huang, Optical and photoelectrochemical studies on Ag2O/TiO2 double-layer thin films, Thin Solid Films. 570 (2014) 436–444.
DOI: 10.1016/j.tsf.2014.05.018
Google Scholar
[29]
P. Sharma, S.C. Katyal, Determination of optical parameters of a-(As2Se3)90Ge10 thin film, J. Phys. D: Appl. Phys. 40 (2007) 2115–2120.
Google Scholar
[30]
B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system: Tauc method for optical absorption edge determination, Phys. Status Solidi B. 252 (2015) 1700–1710.
DOI: 10.1002/pssb.201552007
Google Scholar
[31]
S.J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films, Journal of Materials Research and Technology. 2 (2013) 221–227.
DOI: 10.1016/j.jmrt.2013.02.012
Google Scholar
[32]
E. Gnenna, N. Khemiri, M.I. Alonso, M. Kanzari, Optical characterization of Sb2S3 vacuum annealed films by UV–VIS–NIR spectroscopy and spectroscopic ellipsometry: Determining the refractive index and the optical constants, Optik. 268 (2022) 169740.
DOI: 10.1016/j.ijleo.2022.169740
Google Scholar
[33]
M.M. Abdullah, P. Singh, M. Hasmuddin, G. Bhagavannarayana, M.A. Wahab, In situ growth and ab initio optical characterizations of amorphous Ga3Se4 thin film: A new chalcogenide compound semiconductor thin film, Scripta Materialia. 69 (2013) 381–384.
DOI: 10.1016/j.scriptamat.2013.05.019
Google Scholar
[34]
A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superlattices and Microstructures. 89 (2016) 153–169.
DOI: 10.1016/j.spmi.2015.10.044
Google Scholar
[35]
A. Rahal, S. Benramache, B. Benhaoua, Substrate Temperature Effect on Optical property of ZnO Thin Films, EJ. 18 (2014) 81–88.
DOI: 10.4186/ej.2014.18.2.81
Google Scholar
[36]
M.R. Ahmed, H.M. Ali, M.F. Hasaneen, Influence of different types of substrates on the physical properties of CdSe films, Physica B: Condensed Matter. 608 (2021) 412747.
DOI: 10.1016/j.physb.2020.412747
Google Scholar
[37]
H.S. Soliman, M.M. El-Nahass, A. Qusto, Growth and optical properties of ZnIn2Se4 films, J Mater Sci. 26 (1991) 1556–1564.
DOI: 10.1007/bf00544664
Google Scholar
[38]
M.B. Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, The Effect of Thickness on Optical Band Gap and N-type Conductivity of CuInS2 Thin Films Annealed in Air Atmosphere, Energy Procedia. 44 (2014) 52–60.
DOI: 10.1016/j.egypro.2013.12.009
Google Scholar
[39]
I. Guler, N. Gasanly, Structural and optical properties of thermally annealed thallium indium disulfide thin films, Thin Solid Films. 704 (2020) 137985.
DOI: 10.1016/j.tsf.2020.137985
Google Scholar
[40]
N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, Effects of substrate temperature on the properties of sputtered TiN thin films, J Mater Sci: Mater Electron. 27 (2016) 2800–2808.
DOI: 10.1007/s10854-015-4093-x
Google Scholar
[41]
R. Vishwakarma, Effect of substrate temperature on ZnS films prepared by thermal evaporation technique, J Theor Appl Phys. 9 (2015) 185–192.
DOI: 10.1007/s40094-015-0177-5
Google Scholar
[42]
C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Effect of substrate temperature on physical properties of Cu2FeSnS4 thin films for photocatalysis applications, Materials Science and Engineering: B. 254 (2020) 114509.
DOI: 10.1016/j.mseb.2020.114509
Google Scholar
[43]
C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, F. Williams, A.K. Pradhan, Effects of substrate temperature on the optical and electrical properties of Al:ZnO films, Semicond. Sci. Technol. 23 (2008) 085019.
DOI: 10.1088/0268-1242/23/8/085019
Google Scholar
[44]
F. Aousgi, W. Dimassi, B. Bessais, M. Kanzari, Effect of substrate temperature on the structural, morphological, and optical properties of Sb2S3 thin films, Applied Surface Science. 350 (2015) 19–24.
DOI: 10.1016/j.apsusc.2015.01.126
Google Scholar
[45]
M.I. Abd-Elrahman, R.M. Khafagy, S.A. Zaki, M.M. Hafiz, Characterization of optical constants of Se30Te70 thin film: Effect of the thickness, Materials Science in Semiconductor Processing. 18 (2014) 1–5.
DOI: 10.1016/j.mssp.2013.10.017
Google Scholar
[46]
H. Sun, M. Arab Pour Yazdi, C. Ducros, S.-C. Chen, E. Aubry, C.-K. Wen, J.-H. Hsieh, F. Sanchette, A. Billard, Thickness-dependent optoelectronic properties of CuCr0.93Mg0.07O2 thin films deposited by reactive magnetron sputtering, Materials Science in Semiconductor Processing. 63 (2017) 295–302..
DOI: 10.1016/j.mssp.2017.03.002
Google Scholar
[47]
S.S Kale, C.D Lokhande, Thickness-dependent properties of chemically deposited CdSe thin films, Materials Chemistry and Physics. 62 (2000) 103–108.
DOI: 10.1016/s0254-0584(99)00139-x
Google Scholar
[48]
M. Bouderbala, S. Hamzaoui, B. Amrani, A.H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films, Physica B: Condensed Matter. 403 (2008) 3326–3330.
DOI: 10.1016/j.physb.2008.04.045
Google Scholar
[49]
T. Guang-Lei, H. Hong-Bo, S. Jian-Da, Effect of Microstructure of TiO 2 Thin Films on Optical Band Gap Energy, Chinese Phys. Lett. 22 (2005) 1787–1789.
DOI: 10.1088/0256-307x/22/7/062
Google Scholar
[50]
J.-W. Jeon, D.-W. Jeon, T. Sahoo, M. Kim, J.-H. Baek, J.L. Hoffman, N.S. Kim, I.-H. Lee, Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide film, Journal of Alloys and Compounds. 509 (2011) 10062–10065.
DOI: 10.1016/j.jallcom.2011.08.033
Google Scholar
[51]
E.M. Vinod, R. Naik, A.P.A. Faiyas, R. Ganesan, K.S. Sangunni, Temperature dependent optical constants of amorphous Ge2Sb2Te5 thin films, Journal of Non-Crystalline Solids. 356 (2010) 2172–2174.
DOI: 10.1016/j.jnoncrysol.2010.07.039
Google Scholar
[52]
B. Pejova, B. Abay, I. Bineva, Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films, J. Phys. Chem. C. 114 (2010) 15280–15291.
DOI: 10.1021/jp102773z
Google Scholar
[53]
S.H. Chaki, M.P. Deshpande, J.P. Tailor, Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques, Thin Solid Films. 550 (2014) 291–297.
DOI: 10.1016/j.tsf.2013.11.037
Google Scholar
[54]
A. Perrotta, J. Pilz, A. Milella, A.M. Coclite, Opto-chemical control through thermal treatment of plasma enhanced atomic layer deposited ZnO: An in situ study, Applied Surface Science. 483 (2019) 10–18.
DOI: 10.1016/j.apsusc.2019.03.122
Google Scholar
[55]
F. Abdel-Wahab, N.N. Ali karar, H.A. El Shaikh, R.M. Salem, Effect of Sb on the optical properties of the Ge–Se chalcogenide thin films, Physica B: Condensed Matter. 422 (2013) 40–46.
DOI: 10.1016/j.physb.2013.04.010
Google Scholar
[56]
A.S. Solieman, M.M. Hafiz, A.A. Abu-Sehly, A.A. Alfaqeer, Dependence of optical properties on the thickness of amorphous Ge30Se70 thin films, Journal of Taibah University for Science. 8 (2014) 282–288.
DOI: 10.1016/j.jtusci.2014.01.002
Google Scholar
[57]
E.G. El-Metwally, E.M. Assim, S.S. Fouad, Optical characteristics and dispersion parameters of thermally evaporated Ge50In4Ga13Se33 chalcogenide thin films, Optics & Laser Technology. 131 (2020) 106462.
DOI: 10.1016/j.optlastec.2020.106462
Google Scholar
[58]
E.R. Shaaban, Interpretation of the change in optical constants of different compositions of Ge–Se–In in terms of cohesive energy, Journal of Physics and Chemistry of Solids. 73 (2012) 1131–1135.
DOI: 10.1016/j.jpcs.2012.05.005
Google Scholar