Optical Characterization of Semiconducting Thin Films Using UV-VIS-NIR Spectroscopy: A Review

Article Preview

Abstract:

The review article focuses on the growth of thin film and its characterization by UV-Vis-NIR spectroscopy. For UV-Vis-NIR spectroscopy of thin films, they are usually deposited on translucent quartz glass surfaces. The article reports the extraction of various thin film optical parameters viz., absorption coefficient (α), Urbach energy (Eu), optical band gap (Eg), refractive index (n), extinction coefficient (k), dielectric constants, dissipation factor (tanδ) and optical conductivity (σoptical) by using optical spectra (absorption(A)/transmittance (T)/reflectance (R)). Furthermore, the effect of thin film substrate temperature (Ts) and/or thickness (d) and/or post-deposition annealing temperature (Ta) on various optical parameters is discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 350)

Pages:

115-124

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Steinlechner, I.W. Martin, A.S. Bell, J. Hough, M. Fletcher, P.G. Murray, R. Robie, S. Rowan, R. Schnabel, Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing, Phys. Rev. Lett. 120 (2018) 263602.

DOI: 10.1103/physrevlett.120.263602

Google Scholar

[2] T. Goossens, C. Van Hoof, Thin-film interference filters illuminated by tilted apertures, Appl. Opt. 59 (2020) A112.

DOI: 10.1364/ao.59.00a112

Google Scholar

[3] K. Nikolaidou, P.G.M. Condelipes, C.R.F. Caneira, M. Krack, P.M. Fontes, H.M. Oliveira, M. Kovačič, J. Krč, M. Topič, S. Cardoso, P.P. Freitas, V. Chu, J.P. Conde, Monolithically integrated optical interference and absorption filters on thin film amorphous silicon photosensors for biological detection, Sensors and Actuators B: Chemical. 356 (2022) 131330.

DOI: 10.1016/j.snb.2021.131330

Google Scholar

[4] L.-C. Kuo, H.-W. Pan, C.-L. Chang, S. Chao, Low cryogenic mechanical loss composite silica thin film for low thermal noise dielectric mirror coatings, Opt. Lett. 44 (2019) 247.

DOI: 10.1364/ol.44.000247

Google Scholar

[5] C. Christensen, R. de Reus, S. Bouwstra, Tantalum oxide thin films as protective coatings for sensors, J. Micromech. Microeng. 9 (1999) 113–118.

DOI: 10.1088/0960-1317/9/2/003

Google Scholar

[6] T. Ștefanov, H.V.R. Maraka, P. Meagher, J. Rice, W. Sillekens, D.J. Browne, Thin film metallic glass broad-spectrum mirror coatings for space telescope applications, Journal of Non-Crystalline Solids: X. 7 (2020) 100050.

DOI: 10.1016/j.nocx.2020.100050

Google Scholar

[7] D.K. Dhruv, P.B. H, N.V. Patel, Growth of flash evaporated ZnIn2Se4 thin films, Journal of Applied Sciences and Engineering Research. 3 (2014).

Google Scholar

[8] D.K. Dhruv, B.H. Patel, S.D. Dhruv, P.B. Patel, U.B. Trivedi, N. Agrawal, Synthesis and microstructural characterization of bulk ZnIn2Se4, Materials Today: Proceedings. (2023).

DOI: 10.1016/j.matpr.2023.01.199

Google Scholar

[9] D. Dhruv, B. Patel, Significance of substrate temperatures on the electrical properties of flash evaporated polycrystalline ZnIn2Se4 thin films, Significance. 3 (2015).

Google Scholar

[10] N. Agrawal, M. Sarkar, P. Nagar, D.K. Dhruv, Structural and optical properties of Fe doped InSb bulk systems, Materials Today: Proceedings. 55 (2022) 39–41.

DOI: 10.1016/j.matpr.2021.12.098

Google Scholar

[11] N. Agrawal, M. Sarkar, D.K. Dhruv, Electrical and magnetotransport properties of In0.95Mn0.05Sb film, Materials Today: Proceedings. 59 (2022) 1621–1624.

DOI: 10.1016/j.matpr.2022.03.321

Google Scholar

[12] D.K. Dhruv, B.H. Patel, Fabrication and electrical characterization of Al/p-ZnIn2Se4 thin film Schottky diode structure, Materials Science in Semiconductor Processing. 54 (2016).

DOI: 10.1016/j.mssp.2016.06.012

Google Scholar

[13] D.K. Dhruv, B.H. Patel, D. Lakshminarayana, Fabrication and electrical characterization of p-ZnIn2Se4/n-Si heterojunction diode structure, Materials Research Innovations. 20 (2016).

DOI: 10.1080/14328917.2015.1131919

Google Scholar

[14] S.D. Dhruv, D.K. Dhruv, Anomalous current–voltage and impedance behaviour in heterojunction diode, Materials Today: Proceedings. 55 (2022) A1–A6.

DOI: 10.1016/j.matpr.2022.04.312

Google Scholar

[15] D.K. Dhruv, B.H. Patel, N. Agrawal, R. Banerjee, S.D. Dhruv, P.B. Patel, V. Patel, Synthesis, electrical transport mechanisms and photovoltaic characteristics of p-ZnIn2Se4/n-CdTe thin film heterojunction, J Mater Sci: Mater Electron. (2022).

DOI: 10.1007/s10854-022-08755-z

Google Scholar

[16] D.K. Dhruv, S.D. Dhruv, N. Agrawal, P.B. Patel, Fabrication and transport properties of thermally evaporated cadmium selenide thin films for photovoltaic applications, Materials Today: Proceedings. 55 (2022) 67–72.

DOI: 10.1016/j.matpr.2021.12.173

Google Scholar

[17] D.K. Dhruv, A. Nowicki, B.H. Patel, V.D. Dhamecha, Memory switching characteristics in amorphous ZnIn2Se4 thin films, Surface Engineering. 31 (2015).

DOI: 10.1179/1743294415y.0000000001

Google Scholar

[18] V. Dhamecha, B. Patel, D. Dhruv, A. Nowicki, Resistive switching memory effects in chalcogenide semiconductor ZnGa2Se4 thin films, Surface Engineering. 36 (2020).

DOI: 10.1080/02670844.2019.1625505

Google Scholar

[19] V. Patel, B. Patel, D. Dhruv, V. Dhamecha, A. Nowicki, Bipolar resistive switching behavior in Pt/Zn1−xMgxO/pyrographite/Pt structure for memory application, J Mater Sci: Mater Electron. (2022).

DOI: 10.1007/s10854-022-08921-3

Google Scholar

[20] P. Solanki, M. Vala, D. Dhruv, S.V. Bhatt, B. Kataria, Resistive switching behaviour of novel GdMnO3-based heterostructures, Surfaces and Interfaces. 35 (2022) 102474.

DOI: 10.1016/j.surfin.2022.102474

Google Scholar

[21] S.A.-J. Jassim, A.A.R.A. Zumaila, G.A.A. Al Waly, Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation, Results in Physics. 3 (2013) 173–178.

DOI: 10.1016/j.rinp.2013.08.003

Google Scholar

[22] N. Tigau, V. Ciupina, G. Prodan, The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films, Journal of Crystal Growth. 277 (2005) 529–535.

DOI: 10.1016/j.jcrysgro.2005.01.056

Google Scholar

[23] Mostafa.I. Abd-Elrahman, Mohmed.M. Hafiz, On thickness and annealing dependence of optical properties of Te67.5Ga2.5As30 thin film as optoelectronic material, Journal of Alloys and Compounds. 551 (2013) 562–567.

DOI: 10.1016/j.jallcom.2012.11.001

Google Scholar

[24] N. kumar, U. Parihar, R. Kumar, K. J. Patel, C. J. Panchal, N. Padha, Effect of Film Thickness on Optical Properties of Tin Selenide Thin Films Prepared by Thermal Evaporation for Photovoltaic Applications, MATERIALS. 2 (2012) 41–45.

DOI: 10.5923/j.materials.20120201.08

Google Scholar

[25] R. Sathyamoorthy, C. Sharmila, K. Natarajan, S. Velumani, Influence of annealing on structural and optical properties of Zn3P2 thin films, Materials Characterization. 58 (2007) 745–749.

DOI: 10.1016/j.matchar.2006.11.015

Google Scholar

[26] K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Influence of post-deposition heat treatment on optical properties derived from UV–vis of cadmium telluride (CdTe) thin films deposited on amorphous substrate, Applied Surface Science. 344 (2015) 89–100.

DOI: 10.1016/j.apsusc.2015.03.095

Google Scholar

[27] M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.F. Elhady, A.A. Abuelwafa, Optical Properties of Nano 5,10,15,20-Tetraphenyl-21H,23H-Prophyrin Nickel (II) Thin Films, Current Applied Physics. 12 (2012) 1178–1184.

DOI: 10.1016/j.cap.2012.02.051

Google Scholar

[28] C. Li, J.H. Hsieh, J.C. Cheng, C.C. Huang, Optical and photoelectrochemical studies on Ag2O/TiO2 double-layer thin films, Thin Solid Films. 570 (2014) 436–444.

DOI: 10.1016/j.tsf.2014.05.018

Google Scholar

[29] P. Sharma, S.C. Katyal, Determination of optical parameters of a-(As2Se3)90Ge10 thin film, J. Phys. D: Appl. Phys. 40 (2007) 2115–2120.

Google Scholar

[30] B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system: Tauc method for optical absorption edge determination, Phys. Status Solidi B. 252 (2015) 1700–1710.

DOI: 10.1002/pssb.201552007

Google Scholar

[31] S.J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films, Journal of Materials Research and Technology. 2 (2013) 221–227.

DOI: 10.1016/j.jmrt.2013.02.012

Google Scholar

[32] E. Gnenna, N. Khemiri, M.I. Alonso, M. Kanzari, Optical characterization of Sb2S3 vacuum annealed films by UV–VIS–NIR spectroscopy and spectroscopic ellipsometry: Determining the refractive index and the optical constants, Optik. 268 (2022) 169740.

DOI: 10.1016/j.ijleo.2022.169740

Google Scholar

[33] M.M. Abdullah, P. Singh, M. Hasmuddin, G. Bhagavannarayana, M.A. Wahab, In situ growth and ab initio optical characterizations of amorphous Ga3Se4 thin film: A new chalcogenide compound semiconductor thin film, Scripta Materialia. 69 (2013) 381–384.

DOI: 10.1016/j.scriptamat.2013.05.019

Google Scholar

[34] A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superlattices and Microstructures. 89 (2016) 153–169.

DOI: 10.1016/j.spmi.2015.10.044

Google Scholar

[35] A. Rahal, S. Benramache, B. Benhaoua, Substrate Temperature Effect on Optical property of ZnO Thin Films, EJ. 18 (2014) 81–88.

DOI: 10.4186/ej.2014.18.2.81

Google Scholar

[36] M.R. Ahmed, H.M. Ali, M.F. Hasaneen, Influence of different types of substrates on the physical properties of CdSe films, Physica B: Condensed Matter. 608 (2021) 412747.

DOI: 10.1016/j.physb.2020.412747

Google Scholar

[37] H.S. Soliman, M.M. El-Nahass, A. Qusto, Growth and optical properties of ZnIn2Se4 films, J Mater Sci. 26 (1991) 1556–1564.

DOI: 10.1007/bf00544664

Google Scholar

[38] M.B. Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, The Effect of Thickness on Optical Band Gap and N-type Conductivity of CuInS2 Thin Films Annealed in Air Atmosphere, Energy Procedia. 44 (2014) 52–60.

DOI: 10.1016/j.egypro.2013.12.009

Google Scholar

[39] I. Guler, N. Gasanly, Structural and optical properties of thermally annealed thallium indium disulfide thin films, Thin Solid Films. 704 (2020) 137985.

DOI: 10.1016/j.tsf.2020.137985

Google Scholar

[40] N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, Effects of substrate temperature on the properties of sputtered TiN thin films, J Mater Sci: Mater Electron. 27 (2016) 2800–2808.

DOI: 10.1007/s10854-015-4093-x

Google Scholar

[41] R. Vishwakarma, Effect of substrate temperature on ZnS films prepared by thermal evaporation technique, J Theor Appl Phys. 9 (2015) 185–192.

DOI: 10.1007/s40094-015-0177-5

Google Scholar

[42] C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Effect of substrate temperature on physical properties of Cu2FeSnS4 thin films for photocatalysis applications, Materials Science and Engineering: B. 254 (2020) 114509.

DOI: 10.1016/j.mseb.2020.114509

Google Scholar

[43] C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, F. Williams, A.K. Pradhan, Effects of substrate temperature on the optical and electrical properties of Al:ZnO films, Semicond. Sci. Technol. 23 (2008) 085019.

DOI: 10.1088/0268-1242/23/8/085019

Google Scholar

[44] F. Aousgi, W. Dimassi, B. Bessais, M. Kanzari, Effect of substrate temperature on the structural, morphological, and optical properties of Sb2S3 thin films, Applied Surface Science. 350 (2015) 19–24.

DOI: 10.1016/j.apsusc.2015.01.126

Google Scholar

[45] M.I. Abd-Elrahman, R.M. Khafagy, S.A. Zaki, M.M. Hafiz, Characterization of optical constants of Se30Te70 thin film: Effect of the thickness, Materials Science in Semiconductor Processing. 18 (2014) 1–5.

DOI: 10.1016/j.mssp.2013.10.017

Google Scholar

[46] H. Sun, M. Arab Pour Yazdi, C. Ducros, S.-C. Chen, E. Aubry, C.-K. Wen, J.-H. Hsieh, F. Sanchette, A. Billard, Thickness-dependent optoelectronic properties of CuCr0.93Mg0.07O2 thin films deposited by reactive magnetron sputtering, Materials Science in Semiconductor Processing. 63 (2017) 295–302..

DOI: 10.1016/j.mssp.2017.03.002

Google Scholar

[47] S.S Kale, C.D Lokhande, Thickness-dependent properties of chemically deposited CdSe thin films, Materials Chemistry and Physics. 62 (2000) 103–108.

DOI: 10.1016/s0254-0584(99)00139-x

Google Scholar

[48] M. Bouderbala, S. Hamzaoui, B. Amrani, A.H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films, Physica B: Condensed Matter. 403 (2008) 3326–3330.

DOI: 10.1016/j.physb.2008.04.045

Google Scholar

[49] T. Guang-Lei, H. Hong-Bo, S. Jian-Da, Effect of Microstructure of TiO 2 Thin Films on Optical Band Gap Energy, Chinese Phys. Lett. 22 (2005) 1787–1789.

DOI: 10.1088/0256-307x/22/7/062

Google Scholar

[50] J.-W. Jeon, D.-W. Jeon, T. Sahoo, M. Kim, J.-H. Baek, J.L. Hoffman, N.S. Kim, I.-H. Lee, Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide film, Journal of Alloys and Compounds. 509 (2011) 10062–10065.

DOI: 10.1016/j.jallcom.2011.08.033

Google Scholar

[51] E.M. Vinod, R. Naik, A.P.A. Faiyas, R. Ganesan, K.S. Sangunni, Temperature dependent optical constants of amorphous Ge2Sb2Te5 thin films, Journal of Non-Crystalline Solids. 356 (2010) 2172–2174.

DOI: 10.1016/j.jnoncrysol.2010.07.039

Google Scholar

[52] B. Pejova, B. Abay, I. Bineva, Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films, J. Phys. Chem. C. 114 (2010) 15280–15291.

DOI: 10.1021/jp102773z

Google Scholar

[53] S.H. Chaki, M.P. Deshpande, J.P. Tailor, Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques, Thin Solid Films. 550 (2014) 291–297.

DOI: 10.1016/j.tsf.2013.11.037

Google Scholar

[54] A. Perrotta, J. Pilz, A. Milella, A.M. Coclite, Opto-chemical control through thermal treatment of plasma enhanced atomic layer deposited ZnO: An in situ study, Applied Surface Science. 483 (2019) 10–18.

DOI: 10.1016/j.apsusc.2019.03.122

Google Scholar

[55] F. Abdel-Wahab, N.N. Ali karar, H.A. El Shaikh, R.M. Salem, Effect of Sb on the optical properties of the Ge–Se chalcogenide thin films, Physica B: Condensed Matter. 422 (2013) 40–46.

DOI: 10.1016/j.physb.2013.04.010

Google Scholar

[56] A.S. Solieman, M.M. Hafiz, A.A. Abu-Sehly, A.A. Alfaqeer, Dependence of optical properties on the thickness of amorphous Ge30Se70 thin films, Journal of Taibah University for Science. 8 (2014) 282–288.

DOI: 10.1016/j.jtusci.2014.01.002

Google Scholar

[57] E.G. El-Metwally, E.M. Assim, S.S. Fouad, Optical characteristics and dispersion parameters of thermally evaporated Ge50In4Ga13Se33 chalcogenide thin films, Optics & Laser Technology. 131 (2020) 106462.

DOI: 10.1016/j.optlastec.2020.106462

Google Scholar

[58] E.R. Shaaban, Interpretation of the change in optical constants of different compositions of Ge–Se–In in terms of cohesive energy, Journal of Physics and Chemistry of Solids. 73 (2012) 1131–1135.

DOI: 10.1016/j.jpcs.2012.05.005

Google Scholar