Binding Energy Stark-Shift, Polarizability and Dipole Moment Response of Shallow Donor Impurity in GaAs Quantum Dots

Article Preview

Abstract:

In this study, we have examined, under the influence of an electric field applied along the z-direction, the binding energy Stark-shift, the dipole moment and the polarizability of a confined shallow donor impurity in GaAs conical-shaped quantum dots (CSQD). With square infinite confinement system, the calculations are based on the approximation of the effective mass by using the finite difference method. Our results show that increasing the radius of the CSQD structure and the electric field intensity increases the Stark shift binding energy and it has a mixed behavior as a function of the impurity position. Furthermore, the polarizability and the dipole moment vary in a quasi-linear way as a function of the dot radius and they follow a decreasing function as a function of the electric field intensity. These two physical parameters have a double behavior, they decrease with the position of the impurity in the strong confinement regime and they increase in the top regions of the quantum dot. These results provide a lot of information about the behavior of the electronic wave function which give more interesting ideas for the fabrication of optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 350)

Pages:

127-135

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.C. Jiang, Congxin Xia, Y.M. Liu, S.Y. Wei, Built-in electric field effect on the hydrogenic donor impurity in wurtzite InGaN quantum dot, Physica E 40 (2008) 2714–2719.

DOI: 10.1016/j.physe.2007.12.020

Google Scholar

[2] C.M. Duque, M.G. Barseghyan, C.A. Duque, Donor impurity in vertically-coupled quantum-dots under hydrostatic pressure and applied electric field, Eur. Phys. J. B 73 (2010) 309–319.

DOI: 10.1140/epjb/e2009-00433-7

Google Scholar

[3] Yu-Han Liang, Jun-Han Huang, Neng-Chieh Chang, Chuan-Pu Liu, Designing various self-assembled ZnOx quantum dots/islands on silicon with distinctive characteristics by magnetron sputter, Cryst. Growth Des. 9 (2009) 2021–2025. 304.

DOI: 10.1021/cg8014018

Google Scholar

[4] M. Cristea, A. Radu, E.C. Niculescu, Electric field effect on the third-order nonlinear optical susceptibility in inverted core–shell nanodots with dielectric confinement, J. Lumin. 143 (2013) 592–599.

DOI: 10.1016/j.jlumin.2013.06.022

Google Scholar

[5] M. Chnafi, L. Belamkadem, O. Mommadi, R. Boussetta, M. El Hadi, A. El Moussaouy and C. Duque, Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge. Superlattice. Microst. 159 (2021) 107052.

DOI: 10.1016/j.spmi.2021.107052

Google Scholar

[6] N.C. Helman, J.E. Roth, D.P. Bour, H. Altug, D.A.B. Miller, Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects. IEEE J. Sel. Top. Quant. Electron. 11 (2005) 338–342.

DOI: 10.1109/jstqe.2005.845613

Google Scholar

[7] H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, "Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators," Opt. Express 21, 6377-6390 (2013).

DOI: 10.1364/oe.21.006377

Google Scholar

[8] V.I. Klimov, C.J Schwarz, D.W McBranch, C.A. Leatherdale, and M.G, Bawendi, Ultrafast dynamics of inter-and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers, Physical Review B, 60 (1999) R2177.

DOI: 10.1103/physrevb.60.r2177

Google Scholar

[9] A.L. Morales, N. Raigoza, E. Reyes-Gomez, J.M. Osorio-Guill, C.A. Duque, Impurity-related polarizability and photoionization-cross section in GaAs-Ga1-xAlxAs double quantum wells under electric fields and hydrostatic pressure, Superlattice. Microst. 45 (2009) 590–597.

DOI: 10.1016/j.spmi.2009.03.001

Google Scholar

[10] S.A. Empedocles, M.G. Bawendi, Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots, Science 278 (1997) 2114–2117.

DOI: 10.1126/science.278.5346.2114

Google Scholar

[11] L. Aderras, A. Bah, E. Feddi, F. Dujardin, C.A. Duque, Stark-shift of impurity fundamental state in a lens shaped quantum dot, Physica E 89 (2017) 119–123.

DOI: 10.1016/j.physe.2017.02.012

Google Scholar

[12] Guang-Xin Wang, Li-Li Zhang, Huan Wei, External electric field effect on shallow donor impurity states in Zinc-Blende InxGa1-xN/GaN symmetric coupled quantum dots, Adv. Condens. Matter Phys. (p.7) (2017) 5652763.

DOI: 10.1155/2017/5652763

Google Scholar

[13] O. Mommadi, A. El Moussaouy, M. El Hadi, M. Chnafi, Y. M. Meziani and C. A. Duque Stark shiftand exciton binding energy in parabolic quantum dots: Hydrostatic pressure, temperature, and electric field effects. Philosophical Magazine, 101 (2021) 753-775.

DOI: 10.1080/14786435.2020.1862430

Google Scholar

[14] L. Belamkadem, O.Mommadi, , R. Boussetta, , S. Chouef, M. Chnafi, A. El Moussaouy, A. K. El-Miad. The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots. Thin Solid Films, 757 (2022) 139396.

DOI: 10.1016/j.tsf.2022.139396

Google Scholar

[15] D.Huber, B. U. Lehner, D.Csontosová, M. Reindl, S. Schuler, S. F. C Da Silva, A. Rastelli, Single-particle-picture breakdown in laterally weakly confining GaAs quantum dots. Physical Review B, (2019). 100(23), 235425.

DOI: 10.1103/physrevb.100.235425

Google Scholar

[16] Diana Csontosov´ a, Petr Klenovský, Theory of magneto-optical properties of neutral and charged excitons in GaAs/AlGaAs quantum dots, Phys. Rev. B, 102 (2020) 125412.

DOI: 10.1103/physrevb.102.125412

Google Scholar

[17] Petr Klenovský, Petr Steindl, Johannes Aberl, Eugenio Zallo, Rinaldo Trotta, Armando Rastelli, Thomas Fromherz, Effect of second-order piezoelectricity on the excitonic structure of stress-tuned In(Ga)As/GaAs quantum dots, Phys. Rev. B, 97 (2018) 245314 .

DOI: 10.1103/physrevb.97.245314

Google Scholar

[18] Johannes Aberl, Petr Klenovský, S. Johannes, Wildmann, Javier Martín-Sanchez, Thomas Fromherz, Eugenio Zallo, Josef Humlícek, Armando Rastelli, Rinaldo Trotta, Inversion of the exciton built-in dipole moment in In(Ga)As quantum dots via nonlinear piezoelectric effect, Phys. Rev. B 96 (2017) 45414 (p.6).

DOI: 10.1103/physrevb.96.045414

Google Scholar

[19] E. Iqraoun, A. Sali, K. El-Bakkari, M. E. Mora-Ramos, C.A. Duque, Binding energy, polarizability, and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots. Superlattice. Microst. 163 (2022) 107142.

DOI: 10.1016/j.spmi.2021.107142

Google Scholar