The Influence of Silica Dioxide in the Electrocatalytic Performances of rGO/Fe3O4 as Oxygen Reduction Electrocatalyst

Article Preview

Abstract:

In this study, synthesis of reduced graphene oxide-iron oxide-silica dioxide (rGO/Fe3O4/SiO2) was done through a facile chemical process. Physical characterization was carried out as such Fourier transform infrared spectroscopy (FTIR) which confirmed the presence of silica peak in the spectrum of rGO/Fe3O4/SiO2, while RAMAN displayed the vibrational bands of carbon materials studied. Results of SEM-EDX and TEM confirmed the unification of SiO2 on rGO/Fe3O4 nanocomposite with difference in morphologic structure. X-ray diffraction (XRD) analysis exhibited that addition of SiO2 increased the crystalline size of the nanocomposite. Nitrogen adsorption isotherm analysis describes the nanocomposites fall in the mesopore region. The nanocomposite was then drop-casted on the surface of glassy carbon electrode (GCE) for fabrication of the electrode which denoted as rGO/Fe3O4/SiO2/GCE. Electrochemical characterization of modified electrode was studied using electron impedance spectroscopy (EIS), which showed the minimal resistance charge transfer. Oxygen reduction reaction analysis shows that electrocatalytic reduction of oxygen was excellent with four-electron transfer when calculated using Randles-Sevcik equation. All the analysis was compared to the nanocomposites without the addition of silica oxide (rGO/Fe3O4). This work proves that addition of nanoparticle in a compound as a matrix improves the oxygen reduction potential of rGO/Fe3O4/SiO2/GCE composite.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 354)

Pages:

143-149

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Deng, D. Qi, C. Deng, X. Zhang, and D Zhao: J. Am. Chem. Soc. Vol. 130 (2008), p.28

Google Scholar

[2] Y.Liu, M, Guan, L.Feng and S Deng.: Nanotechnology Vol. 24 (2013), p.025604.

Google Scholar

[3] X. Yang, X. Zhang, Y. Ma, Y. Huang and Y. Chen,: J. Mater. Chem., Vol. 86 (2009), pp.2710-2714.

Google Scholar

[4] F. Yusoff, A. R. Rosli and H. Ghadimi: J. Electrochem. Soc. Vol 168. (2021), p.026509.

Google Scholar

[5] V.Gupta, N.Sharma, U. Singh, M. Arif and A. Singh: Optik Vol. 143 (2017), p.115

Google Scholar

[6] J.Lee and G. Kim: Carbon Vol. 122 (2017), p.281

Google Scholar

[7] N. A.Kumar, H. J. Choi, Y. R. Shin, D. W. Chang, L. Dai, and J. B. Baek: (2012). ACS nano Vol 6.2 (2012), p.1715

Google Scholar

[8] R. Krishna, C. Dias, J. Ventura, and E. Titus: Mater. Today: Proc. Vol. 3.8 (2016), p.2807.

Google Scholar

[9] P.K. Boruah, B. Sharma, N.Hussain, & M. R. Das: Chemosphere Vol. 168 (2017), p.1058

Google Scholar

[10] M.Hassan, M. Seifi, and H. Hekmatara: Chin. J. Phys. Vol. 55.4 (2017), p.1319

Google Scholar

[11] F.Yusoff, K.Suresh and M. S. Noorashikin :IOP Conf. Ser.: Earth Environ. Sci. Vol. 463 (2020), p.012078

DOI: 10.1088/1755-1315/463/1/012078

Google Scholar

[12] F.Jiang, Z.Yao, R. Yue, Y. Du, J. Xu, P.Yang and C.Wang: Int. J. Hydrog. Energy Vol. 37.19 (2012), p.14085

Google Scholar

[13] R. N.Olcese, M.Bettahar, D.Petitjean, B.Malaman, F.Giovanella and A. Dufour: Appl. Catal. B Vol. 115 (2012), p.63

DOI: 10.1016/j.apcatb.2011.12.005

Google Scholar

[14] Y.C. Chen, X.C. Huang, Y.L. Luo, Y.C. Chang, Y. Z., Hsieh, and H.Y. Hsu: Sci. Technol. Adv. Mater. Vol. 4.4 (2013), p.044407

Google Scholar

[15] S. Alam, C. Anand, R. Logudurai, V. V. Balasubramanian, K. Ariga, A. C. Bose, and A.Vinu: Microporous Mesoporous Mater. Vol. 121.1-3 (2009), p.178

DOI: 10.1016/j.micromeso.2009.01.029

Google Scholar

[16] W. S.Hummers and R.E. Offeman: J. Am. Chem. Soc. Vol 80.6 (1958), p.1339

Google Scholar

[17] K.Yang, H.Peng, Y. Wen and N. Li: Appl. Surf. Sci. Vol. 256.10 (2010), p.3093

Google Scholar

[18] Y.Farhanini, N. T.,Khing, C. C.,Hao, L. P. Sang, N. B., Muhamad and N. Md Saleh, Malaysian J. Anal. Sci. Vol. 22.2 (2018), p.227

Google Scholar

[19] A. M. B., Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J.M Oliveira: J. Mol. Struct. Vol. 986.1-3 (2011), p.16

Google Scholar

[20] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z., Sun, A., Slesarev and J.M. Tour: ACS nano Vol. 4.8 (2010), pp.4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[21] A. Iwan, F. Caballero-briones, M. Malinowski, M. Filapek, I.Tazbi, and J. Guerrero- contreras,: J. Int. J. Hydrog. Energy Vol. 42.22 (2017), p.15359

DOI: 10.1016/j.ijhydene.2017.04.236

Google Scholar

[22] F., Yusoff, K. Suresh, & W.M. Khairul: J Phys Chem Solids Vol. 163 (2022), p.110551.

Google Scholar

[23] A.Prakash, S., Chandra and D. Bahadur: Carbon 50.11 Vol. (2012), p.4209

Google Scholar

[24] M. Hayati-Ashtiani: Part Part Syst Charact Vol. 28.3‐4 (2011), p.71

Google Scholar

[25] F.Yusoff, A.Aziz, N.Mohamed and S.A Ghani: Int. J. Electrochem. Sci. Vol. 8.8 (2013), p.10672

Google Scholar

[26] J.Lee and G.Kim: Carbon Vol. 122 (2017), p.281

Google Scholar