[1]
N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Advanced engineering materials 3(6) (2001) 357-370.
DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i
Google Scholar
[2]
I. Ibrahim, F. Mohamed, E. Lavernia, Particulate reinforced metal matrix composites—a review, Journal of materials science 26 (1991) 1137-1156.
DOI: 10.1007/bf00544448
Google Scholar
[3]
T.F. Klimowicz, The large-scale commercialization of aluminum-matrix composites, JOM 46(11) (1994) 49-53.
DOI: 10.1007/bf03222634
Google Scholar
[4]
J.R. Davis, Aluminum and aluminum alloys, ASM international1993.
Google Scholar
[5]
R. Dasgupta, Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications, ISRN metallurgy 2012 (2012).
DOI: 10.5402/2012/594573
Google Scholar
[6]
S. Gopalakrishnan, N. Murugan, Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method, Composites Part B: Engineering 43(2) (2012) 302-308.
DOI: 10.1016/j.compositesb.2011.08.049
Google Scholar
[7]
B. Torres, M. Garrido, A. Rico, P. Rodrigo, M. Campo, J. Rams, Wear behaviour of thermal spray Al/SiCp coatings, Wear 268(5) (2010) 828-836.
DOI: 10.1016/j.wear.2009.12.006
Google Scholar
[8]
S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, F.M. Varachia, Aluminum Matrix Composites for Industrial Use: Advances and Trends, Procedia Manufacturing 7 (2017) 178-182.
DOI: 10.1016/j.promfg.2016.12.045
Google Scholar
[9]
C. Selcuk, A. Kennedy, Al–TiC composite made by the addition of master alloys pellets synthesised from reacted elemental powders, Materials Letters 60(28) (2006) 3364-3366.
DOI: 10.1016/j.matlet.2006.03.021
Google Scholar
[10]
E. Huttunen-Saarivirta, Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: a review, Journal of Alloys and Compounds 363(1) (2004) 154-178.
DOI: 10.1016/s0925-8388(03)00445-6
Google Scholar
[11]
S.-q. Jiang, G. Wang, Q.-w. Ren, C.-d. Yang, Z.-h. Wang, Z.-h. Zhou, In situ synthesis of Fe-based alloy clad coatings containing TiB 2–TiN–(h-BN), International Journal of Minerals, Metallurgy, and Materials 22(6) (2015) 613-619.
DOI: 10.1007/s12613-015-1114-y
Google Scholar
[12]
J. Li, X.-j. Zhang, H.-p. Wang, M.-p. Li, Microstructure and mechanical properties of Ni-based composite coatings reinforced by in situ synthesized TiB 2+ TiC by laser cladding, International Journal of Minerals, Metallurgy, and Materials 20(1) (2013) 57-64.
DOI: 10.1007/s12613-013-0693-8
Google Scholar
[13]
M. Masanta, S. Shariff, A.R. Choudhury, Tribological behavior of TiB2–TiC–Al2O3 composite coating synthesized by combined SHS and laser technology, Surface and Coatings Technology 204(16-17) (2010) 2527-2538.
DOI: 10.1016/j.surfcoat.2010.01.027
Google Scholar
[14]
W.-q. Yan, L. Dai, C.-b. Gui, In situ synthesis and hardness of TiC/Ti 5 Si 3 composites on Ti-5Al-2.5 Sn substrates by gas tungsten arc welding, International Journal of Minerals, Metallurgy, and Materials 20(3) (2013) 284-289.
DOI: 10.1007/s12613-013-0725-4
Google Scholar
[15]
M. Gui, S.B. Kang, Aluminum hybrid composite coatings containing SiC and graphite particles by plasma spraying, Materials Letters 51(5) (2001) 396-401.
DOI: 10.1016/s0167-577x(01)00327-5
Google Scholar
[16]
Z. Li, M. Wei, K. Xiao, Z. Bai, W. Xue, C. Dong, D. Wei, X. li, Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding, Ceramics International 45 (2018).
DOI: 10.1016/j.ceramint.2018.09.140
Google Scholar
[17]
J. Xu, B. Zou, S. Tao, M. Zhang, X. Cao, Fabrication and properties of Al2O3–TiB2–TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders, Journal of Alloys and Compounds 672 (2016) 251-259.
DOI: 10.1016/j.jallcom.2016.02.116
Google Scholar
[18]
M. Razavi, A.H. Rajabi-Zamani, M.R. Rahimipour, R. Kaboli, M.O. Shabani, R. Yazdani-Rad, Synthesis of Fe–TiC–Al2O3 hybrid nanocomposite via carbothermal reduction enhanced by mechanical activation, Ceramics International 37(2) (2011) 443-449.
DOI: 10.1016/j.ceramint.2010.09.013
Google Scholar
[19]
J. Xu, B. Zou, X. Fan, S. Zhao, Y. Hui, Y. Wang, X. Zhou, X. Cai, S. Tao, H. Ma, Reactive plasma spraying synthesis and characterization of TiB2–TiC–Al2O3/Al composite coatings on a magnesium alloy, Journal of alloys and compounds 596 (2014) 10-18.
DOI: 10.1016/j.jallcom.2014.01.178
Google Scholar
[20]
X. Duan, S. Gao, Q. Dong, Y. Zhou, M. Xi, X. Xian, B. Wang, Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding, Surface and Coatings Technology 291 (2016) 230-238.
DOI: 10.1016/j.surfcoat.2016.02.045
Google Scholar
[21]
W. Jiang, L. Shen, M. Xu, Z. Wang, Z. Tian, Mechanical properties and corrosion resistance of Ni-Co-SiC composite coatings by magnetic field-induced jet electrodeposition, Journal of Alloys and Compounds 791 (2019) 847-855.
DOI: 10.1016/j.jallcom.2019.03.391
Google Scholar
[22]
Q. An, L. Huang, Y. Jiao, Y. Bao, B. Zhong, L. Geng, Intergrowth microstructure and superior wear resistance of (TiB+ TiC)/Ti64 hybrid coatings by gas tungsten arc cladding, Materials & Design 162 (2019) 34-44.
DOI: 10.1016/j.matdes.2018.11.039
Google Scholar
[23]
K.S. Al-Hamdani, J.W. Murray, T. Hussain, A.T. Clare, Controlling ceramic-reinforcement distribution in laser cladding of MMCs, Surface and Coatings Technology 381 (2020) 125128.
DOI: 10.1016/j.surfcoat.2019.125128
Google Scholar
[24]
H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, A.T. Clare, Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders, Materials Letters 214 (2018) 123-126.
DOI: 10.1016/j.matlet.2017.11.121
Google Scholar
[25]
M. Al-Thamir, D.G. McCartney, M. Simonelli, R. Hague, A. Clare, Processability of atypical WC-Co composite feedstock by laser powder-bed fusion, Materials 13(1) (2019) 50.
DOI: 10.3390/ma13010050
Google Scholar
[26]
W.W. Wits, M. de Smit, K. Al-Hamdani, A.T. Clare, Laser powder bed fusion of a Magnesium-SiC metal matrix composite, Procedia CIRP 81 (2019) 506-511.
DOI: 10.1016/j.procir.2019.03.137
Google Scholar
[27]
K.S. Al-Hamdani, J.W. Murray, T. Hussain, A.T. Clare, Heat-treatment and mechanical properties of cold-sprayed high strength Al alloys from satellited feedstocks, Surface and Coatings Technology 374 (2019) 21-31.
DOI: 10.1016/j.surfcoat.2019.05.043
Google Scholar
[28]
K. Al-Hamdani, J. Murray, T. Hussain, A. Kennedy, A. Clare, Cold sprayed metal-ceramic coatings using satellited powders, Materials Letters 198 (2017) 184-187.
DOI: 10.1016/j.matlet.2017.03.175
Google Scholar
[29]
Y. Jiang, W. Liu, N. Wang, H. Ru, Multiphase composite Hf0. 8Ti0· 2B2–SiC–Si coating providing oxidation and ablation protection for graphite under different high temperature oxygen-containing environments, Ceramics International 47(2) (2021) 1903-1916.
DOI: 10.1016/j.ceramint.2020.09.019
Google Scholar
[30]
G. Ma, H. Cui, D. Jiang, H. Chen, X. Hu, G. Zhang, R. Wang, X. Sun, X. Song, The evolution of multi and hierarchical carbides and their collaborative wear-resisting effects in CoCrNi/WC composite coatings via laser cladding, Materials Today Communications 30 (2022) 103223.
DOI: 10.1016/j.mtcomm.2022.103223
Google Scholar
[31]
B. Zhang, Y. Yu, S. Zhu, Z. Zhang, X. Tao, Z. Wang, B. Lu, Microstructure and wear properties of TiN–Al2O3–Cr2B multiphase ceramics in-situ reinforced CoCrFeMnNi high-entropy alloy coating, Materials Chemistry and Physics 276 (2022) 125352.
DOI: 10.1016/j.matchemphys.2021.125352
Google Scholar
[32]
J. Yu, H. Ho, J. Chen, Effect of Ti content on the microstructure and mechanical properties of laser clad Ti/B4C/dr40-based composite coatings on shaft parts surface, Ceramics International 48(10) (2022) 13551-13562.
DOI: 10.1016/j.ceramint.2022.01.234
Google Scholar
[33]
V. Ocelík, M. Eekma, I. Hemmati, J.T.M. De Hosson, Elimination of Start/Stop defects in laser cladding, Surface and Coatings Technology 206(8-9) (2012) 2403-2409.
DOI: 10.1016/j.surfcoat.2011.10.040
Google Scholar
[34]
J. Bennett, S. Webster, J. Byers, O. Johnson, S. Wolff, K. Ehmann, J. Cao, Powder-borne porosity in directed energy deposition, Journal of Manufacturing Processes 80 (2022) 69-74.
DOI: 10.1016/j.jmapro.2022.04.036
Google Scholar
[35]
S.J. Wolff, S. Webster, N.D. Parab, B. Aronson, B. Gould, A. Greco, T. Sun, In-situ observations of directed energy deposition additive manufacturing using high-speed X-ray imaging, Jom 73 (2021) 189-200.
DOI: 10.1007/s11837-020-04469-x
Google Scholar
[36]
G. Lian, C. Zhao, Y. Zhang, M. Feng, J. Jiang, Investigation into micro-hardness and wear resistance of 316L/SiC composite coating in laser cladding, Applied Sciences 10(9) (2020) 3167.
DOI: 10.3390/app10093167
Google Scholar
[37]
T. Tarasova, G. Gvozdeva, R. Ableyeva, Aluminium matrix composites produced by laser based additive manufacturing, Materials Today: Proceedings 11 (2019) 305-310.
DOI: 10.1016/j.matpr.2018.12.149
Google Scholar
[38]
L. Reddy, S.P. Preston, P. Shipway, C. Davis, T. Hussain, Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology 349 (2018) 198-207.
DOI: 10.1016/j.surfcoat.2018.05.054
Google Scholar
[39]
C. Huang, Y. Zhang, R. Vilar, J. Shen, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Materials & Design 41 (2012) 338-343.
DOI: 10.1016/j.matdes.2012.04.049
Google Scholar
[40]
M. Li, J. Huang, Y. Zhu, Z. Li, Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding, Surface and Coatings Technology 206(19-20) (2012) 4021-4026.
DOI: 10.1016/j.surfcoat.2012.03.082
Google Scholar
[41]
P. Farahmand, S. Liu, Z. Zhang, R. Kovacevic, Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3, Ceramics International 40(10) (2014) 15421-15438.
DOI: 10.1016/j.ceramint.2014.06.097
Google Scholar