Deposition of Multi-Ceramic Aluminium-Matrix Composite Coating by Direct Laser Deposition

Article Preview

Abstract:

Using of metal matrix composite coating is a promising approach for improving the surface properties of a component against the mechanical and environmental attacks especially wear and corrosion. Laser cladding (LC), also known as direct energy deposition (DED), is an additive manufacturing (AM) technique, able to perform coating, repair worn parts, manufacturing and prototyping. In this work, pure Al and a mixture of multi-ceramic Al-15SiC-15Al2O3 coatings were successfully deposited on Al-based substrate. The quality of the deposited clads was evaluated according to macro-graphic, microstructure, and microhardness characteristics. The microscopic inspection of the multi-ceramic coatings showed a slight dilution of SiC particles. Also, XRD investigation revealed a formation of Al4C3 carbide. Besides SiC and Al2O3 hard phases, this yielded an increase in matrix microhardness about 180% (from 75 to 212 Hv0.05) as compared to pure Al clads, indicating a great improvement in the mechanical properties of the composite cladded coating.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 354)

Pages:

69-78

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Advanced engineering materials 3(6) (2001) 357-370.

DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i

Google Scholar

[2] I. Ibrahim, F. Mohamed, E. Lavernia, Particulate reinforced metal matrix composites—a review, Journal of materials science 26 (1991) 1137-1156.

DOI: 10.1007/bf00544448

Google Scholar

[3] T.F. Klimowicz, The large-scale commercialization of aluminum-matrix composites, JOM 46(11) (1994) 49-53.

DOI: 10.1007/bf03222634

Google Scholar

[4] J.R. Davis, Aluminum and aluminum alloys, ASM international1993.

Google Scholar

[5] R. Dasgupta, Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications, ISRN metallurgy 2012 (2012).

DOI: 10.5402/2012/594573

Google Scholar

[6] S. Gopalakrishnan, N. Murugan, Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method, Composites Part B: Engineering 43(2) (2012) 302-308.

DOI: 10.1016/j.compositesb.2011.08.049

Google Scholar

[7] B. Torres, M. Garrido, A. Rico, P. Rodrigo, M. Campo, J. Rams, Wear behaviour of thermal spray Al/SiCp coatings, Wear 268(5) (2010) 828-836.

DOI: 10.1016/j.wear.2009.12.006

Google Scholar

[8] S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, F.M. Varachia, Aluminum Matrix Composites for Industrial Use: Advances and Trends, Procedia Manufacturing 7 (2017) 178-182.

DOI: 10.1016/j.promfg.2016.12.045

Google Scholar

[9] C. Selcuk, A. Kennedy, Al–TiC composite made by the addition of master alloys pellets synthesised from reacted elemental powders, Materials Letters 60(28) (2006) 3364-3366.

DOI: 10.1016/j.matlet.2006.03.021

Google Scholar

[10] E. Huttunen-Saarivirta, Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: a review, Journal of Alloys and Compounds 363(1) (2004) 154-178.

DOI: 10.1016/s0925-8388(03)00445-6

Google Scholar

[11] S.-q. Jiang, G. Wang, Q.-w. Ren, C.-d. Yang, Z.-h. Wang, Z.-h. Zhou, In situ synthesis of Fe-based alloy clad coatings containing TiB 2–TiN–(h-BN), International Journal of Minerals, Metallurgy, and Materials 22(6) (2015) 613-619.

DOI: 10.1007/s12613-015-1114-y

Google Scholar

[12] J. Li, X.-j. Zhang, H.-p. Wang, M.-p. Li, Microstructure and mechanical properties of Ni-based composite coatings reinforced by in situ synthesized TiB 2+ TiC by laser cladding, International Journal of Minerals, Metallurgy, and Materials 20(1) (2013) 57-64.

DOI: 10.1007/s12613-013-0693-8

Google Scholar

[13] M. Masanta, S. Shariff, A.R. Choudhury, Tribological behavior of TiB2–TiC–Al2O3 composite coating synthesized by combined SHS and laser technology, Surface and Coatings Technology 204(16-17) (2010) 2527-2538.

DOI: 10.1016/j.surfcoat.2010.01.027

Google Scholar

[14] W.-q. Yan, L. Dai, C.-b. Gui, In situ synthesis and hardness of TiC/Ti 5 Si 3 composites on Ti-5Al-2.5 Sn substrates by gas tungsten arc welding, International Journal of Minerals, Metallurgy, and Materials 20(3) (2013) 284-289.

DOI: 10.1007/s12613-013-0725-4

Google Scholar

[15] M. Gui, S.B. Kang, Aluminum hybrid composite coatings containing SiC and graphite particles by plasma spraying, Materials Letters 51(5) (2001) 396-401.

DOI: 10.1016/s0167-577x(01)00327-5

Google Scholar

[16] Z. Li, M. Wei, K. Xiao, Z. Bai, W. Xue, C. Dong, D. Wei, X. li, Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding, Ceramics International 45 (2018).

DOI: 10.1016/j.ceramint.2018.09.140

Google Scholar

[17] J. Xu, B. Zou, S. Tao, M. Zhang, X. Cao, Fabrication and properties of Al2O3–TiB2–TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders, Journal of Alloys and Compounds 672 (2016) 251-259.

DOI: 10.1016/j.jallcom.2016.02.116

Google Scholar

[18] M. Razavi, A.H. Rajabi-Zamani, M.R. Rahimipour, R. Kaboli, M.O. Shabani, R. Yazdani-Rad, Synthesis of Fe–TiC–Al2O3 hybrid nanocomposite via carbothermal reduction enhanced by mechanical activation, Ceramics International 37(2) (2011) 443-449.

DOI: 10.1016/j.ceramint.2010.09.013

Google Scholar

[19] J. Xu, B. Zou, X. Fan, S. Zhao, Y. Hui, Y. Wang, X. Zhou, X. Cai, S. Tao, H. Ma, Reactive plasma spraying synthesis and characterization of TiB2–TiC–Al2O3/Al composite coatings on a magnesium alloy, Journal of alloys and compounds 596 (2014) 10-18.

DOI: 10.1016/j.jallcom.2014.01.178

Google Scholar

[20] X. Duan, S. Gao, Q. Dong, Y. Zhou, M. Xi, X. Xian, B. Wang, Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding, Surface and Coatings Technology 291 (2016) 230-238.

DOI: 10.1016/j.surfcoat.2016.02.045

Google Scholar

[21] W. Jiang, L. Shen, M. Xu, Z. Wang, Z. Tian, Mechanical properties and corrosion resistance of Ni-Co-SiC composite coatings by magnetic field-induced jet electrodeposition, Journal of Alloys and Compounds 791 (2019) 847-855.

DOI: 10.1016/j.jallcom.2019.03.391

Google Scholar

[22] Q. An, L. Huang, Y. Jiao, Y. Bao, B. Zhong, L. Geng, Intergrowth microstructure and superior wear resistance of (TiB+ TiC)/Ti64 hybrid coatings by gas tungsten arc cladding, Materials & Design 162 (2019) 34-44.

DOI: 10.1016/j.matdes.2018.11.039

Google Scholar

[23] K.S. Al-Hamdani, J.W. Murray, T. Hussain, A.T. Clare, Controlling ceramic-reinforcement distribution in laser cladding of MMCs, Surface and Coatings Technology 381 (2020) 125128.

DOI: 10.1016/j.surfcoat.2019.125128

Google Scholar

[24] H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, A.T. Clare, Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders, Materials Letters 214 (2018) 123-126.

DOI: 10.1016/j.matlet.2017.11.121

Google Scholar

[25] M. Al-Thamir, D.G. McCartney, M. Simonelli, R. Hague, A. Clare, Processability of atypical WC-Co composite feedstock by laser powder-bed fusion, Materials 13(1) (2019) 50.

DOI: 10.3390/ma13010050

Google Scholar

[26] W.W. Wits, M. de Smit, K. Al-Hamdani, A.T. Clare, Laser powder bed fusion of a Magnesium-SiC metal matrix composite, Procedia CIRP 81 (2019) 506-511.

DOI: 10.1016/j.procir.2019.03.137

Google Scholar

[27] K.S. Al-Hamdani, J.W. Murray, T. Hussain, A.T. Clare, Heat-treatment and mechanical properties of cold-sprayed high strength Al alloys from satellited feedstocks, Surface and Coatings Technology 374 (2019) 21-31.

DOI: 10.1016/j.surfcoat.2019.05.043

Google Scholar

[28] K. Al-Hamdani, J. Murray, T. Hussain, A. Kennedy, A. Clare, Cold sprayed metal-ceramic coatings using satellited powders, Materials Letters 198 (2017) 184-187.

DOI: 10.1016/j.matlet.2017.03.175

Google Scholar

[29] Y. Jiang, W. Liu, N. Wang, H. Ru, Multiphase composite Hf0. 8Ti0· 2B2–SiC–Si coating providing oxidation and ablation protection for graphite under different high temperature oxygen-containing environments, Ceramics International 47(2) (2021) 1903-1916.

DOI: 10.1016/j.ceramint.2020.09.019

Google Scholar

[30] G. Ma, H. Cui, D. Jiang, H. Chen, X. Hu, G. Zhang, R. Wang, X. Sun, X. Song, The evolution of multi and hierarchical carbides and their collaborative wear-resisting effects in CoCrNi/WC composite coatings via laser cladding, Materials Today Communications 30 (2022) 103223.

DOI: 10.1016/j.mtcomm.2022.103223

Google Scholar

[31] B. Zhang, Y. Yu, S. Zhu, Z. Zhang, X. Tao, Z. Wang, B. Lu, Microstructure and wear properties of TiN–Al2O3–Cr2B multiphase ceramics in-situ reinforced CoCrFeMnNi high-entropy alloy coating, Materials Chemistry and Physics 276 (2022) 125352.

DOI: 10.1016/j.matchemphys.2021.125352

Google Scholar

[32] J. Yu, H. Ho, J. Chen, Effect of Ti content on the microstructure and mechanical properties of laser clad Ti/B4C/dr40-based composite coatings on shaft parts surface, Ceramics International 48(10) (2022) 13551-13562.

DOI: 10.1016/j.ceramint.2022.01.234

Google Scholar

[33] V. Ocelík, M. Eekma, I. Hemmati, J.T.M. De Hosson, Elimination of Start/Stop defects in laser cladding, Surface and Coatings Technology 206(8-9) (2012) 2403-2409.

DOI: 10.1016/j.surfcoat.2011.10.040

Google Scholar

[34] J. Bennett, S. Webster, J. Byers, O. Johnson, S. Wolff, K. Ehmann, J. Cao, Powder-borne porosity in directed energy deposition, Journal of Manufacturing Processes 80 (2022) 69-74.

DOI: 10.1016/j.jmapro.2022.04.036

Google Scholar

[35] S.J. Wolff, S. Webster, N.D. Parab, B. Aronson, B. Gould, A. Greco, T. Sun, In-situ observations of directed energy deposition additive manufacturing using high-speed X-ray imaging, Jom 73 (2021) 189-200.

DOI: 10.1007/s11837-020-04469-x

Google Scholar

[36] G. Lian, C. Zhao, Y. Zhang, M. Feng, J. Jiang, Investigation into micro-hardness and wear resistance of 316L/SiC composite coating in laser cladding, Applied Sciences 10(9) (2020) 3167.

DOI: 10.3390/app10093167

Google Scholar

[37] T. Tarasova, G. Gvozdeva, R. Ableyeva, Aluminium matrix composites produced by laser based additive manufacturing, Materials Today: Proceedings 11 (2019) 305-310.

DOI: 10.1016/j.matpr.2018.12.149

Google Scholar

[38] L. Reddy, S.P. Preston, P. Shipway, C. Davis, T. Hussain, Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology 349 (2018) 198-207.

DOI: 10.1016/j.surfcoat.2018.05.054

Google Scholar

[39] C. Huang, Y. Zhang, R. Vilar, J. Shen, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Materials & Design 41 (2012) 338-343.

DOI: 10.1016/j.matdes.2012.04.049

Google Scholar

[40] M. Li, J. Huang, Y. Zhu, Z. Li, Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding, Surface and Coatings Technology 206(19-20) (2012) 4021-4026.

DOI: 10.1016/j.surfcoat.2012.03.082

Google Scholar

[41] P. Farahmand, S. Liu, Z. Zhang, R. Kovacevic, Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3, Ceramics International 40(10) (2014) 15421-15438.

DOI: 10.1016/j.ceramint.2014.06.097

Google Scholar