[1]
H. Liu, Y. Shen, S. Yang, A comprehensive solution to miniaturized tensile testing: Specimen geometry optimization and extraction of constitutive behaviors using inverse FEM procedure, J. Fusion Engineering and Design.121, (2017) 188-197.
DOI: 10.1016/j.fusengdes.2017.07.016
Google Scholar
[2]
Z. Wenbin, C.C. J., D.C. F., Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs, J. Renewable and Sustainable Energy Reviews.173, (2023).
DOI: 10.1016/j.rser.2022.113074
Google Scholar
[3]
B. Mohammed, T. Park, H. Kim, The forming limit curve for multiphase advanced high strength steels based on crystal plasticity finite element modeling, J. Materials Science and Engineering: a.725, (2018) 250-266.
DOI: 10.1016/j.msea.2018.04.029
Google Scholar
[4]
H. Xie, X. Dong, Q. Wang, Investigation on transient electrically-assisted stress relaxation of QP980 advanced high strength steel, J. Mechanics of Materials.93, (2016) 238-245.
DOI: 10.1016/j.mechmat.2015.11.007
Google Scholar
[5]
X. Hu, X. Sun, L. Hector, Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach, J. Acta Materialia.132, (2017) 230-244.
DOI: 10.1016/j.actamat.2017.04.028
Google Scholar
[6]
Y. Hou, J. Min, N. Guo, Evolving asymmetric yield surfaces of quenching and partitioning steels: Characterization and modeling, J. Journal of Materials Processing Technology.290, (2021) 116979.
DOI: 10.1016/j.jmatprotec.2020.116979
Google Scholar
[7]
A. Ivanchenko, I. Tochilin A.V. Zhdanov, Thermal State Simulation of Welded Steel Plates under Laser Welding Conditions, J. Solid State Phenomena.316, (2021) 396-401.
DOI: 10.4028/www.scientific.net/ssp.316.396
Google Scholar
[8]
A. Bernatskyi, O.M. Berdnikova, O. Kushnarova, Laser Spot Welding a Three-Layered Panel in Different Spatial Positions, J. Solid State Phenomena.331, (2022) 3-9.
DOI: 10.4028/p-x8bytl
Google Scholar
[9]
H. Zhao, R. Huang, Y. Sun, Microstructure and mechanical properties of fiber laser welded QP980/press-hardened 22MnB5 steel joint, J. Journal of Materials Research and Technology. 9(5), (2020) 10079-10090.
DOI: 10.1016/j.jmrt.2020.07.011
Google Scholar
[10]
W. Guo, Z. Wan, Q. Jia, Laser weldability of TWIP980 with DP980/B1500HS/QP980 steels: Microstructure and mechanical properties, J. Optics & Laser Technology.124, (2020) 105961.
DOI: 10.1016/j.optlastec.2019.105961
Google Scholar
[11]
F. Dittrich, J. Kaars, B. Masek, HAZ characterization of welded 42SiCr steel treated by quenching and partitioning, J. Journal of Materials Processing Technology.268, (2019) 37-46.
DOI: 10.1016/j.jmatprotec.2018.12.035
Google Scholar
[12]
E. Öztürk,H. Arıkan, Investigation of mechanical properties of laser welded dual-phase steels at macro and micro levels, J. Optics & Laser Technology.157, (2023) 108713.
DOI: 10.1016/j.optlastec.2022.108713
Google Scholar
[13]
Z. Wang, Z. Luo, M. Huang, Revealing hydrogen-induced delayed fracture in ferrite-containing quenching and partitioning steels, J. Materialia.4, (2018) 260-267.
DOI: 10.1016/j.mtla.2018.09.022
Google Scholar
[14]
J. He, G. Han, S. Li, To correlate the phase transformation and mechanical behavior of QP steel sheets, J. International Journal of Mechanical Sciences.152, (2019) 198-210.
DOI: 10.1016/j.ijmecsci.2019.01.003
Google Scholar
[15]
ASTM. Standard Guide for Preparation of Metallographic Specimens: 03.01. [S]: Astm, 2017: 1-12.
Google Scholar
[16]
Astm. Standard Test Methods for Tension Testing of Metallic Materials: ASTM E8/E8M-22. [S], 2022: 1-31.
Google Scholar
[17]
W. Li, L. Ma, P. Peng, Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint, J. Materials Science and Engineering: a.717, (2018) 124-133.
DOI: 10.1016/j.msea.2018.01.050
Google Scholar
[18]
Y. Xu, Y. Gong, H. Du, A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel, J. International Journal of Lightweight Materials and Manufacture.3(1), (2020) 26-35.
DOI: 10.1016/j.ijlmm.2019.11.003
Google Scholar
[19]
J. He, G. Han,Y. Feng, Phase transformation and plastic behavior of QP steel sheets: Transformation kinetics-informed modeling and forming limit prediction, J. Thin-walled Structures.173, (2022) 108977.
DOI: 10.1016/j.tws.2022.108977
Google Scholar
[20]
X. Chen, C. Niu, C. Lian, The Evaluation of Formability of the 3rd Generation Advanced High Strength Steels QP980 based on Digital Image Correlation Method, J. Procedia Engineering.207, (2017) 556-561.
DOI: 10.1016/j.proeng.2017.10.1020
Google Scholar
[21]
Q. Jia, W. Guo, Z. Wan, Microstructure and mechanical properties of laser welded dissimilar joints between QP and boron alloyed martensitic steels, J. Journal of Materials Processing Technology.259, (2018) 58-67.
DOI: 10.1016/j.jmatprotec.2018.04.020
Google Scholar
[22]
J. Min, L.G. Hector Jr., L. Zhang, Plastic instability at elevated temperatures in a TRIP-assisted steel, J. Materials & Design.95, (2016) 370-386.
DOI: 10.1016/j.matdes.2016.01.113
Google Scholar
[23]
C.B. Finfrock, B. Ellyson, S.R.J. Likith, Elucidating the temperature dependence of TRIP in Q&P steels using synchrotron X-Ray diffraction, constituent phase properties, and strain-based kinetics models, J. Acta Materialia.237, (2022) 118126.
DOI: 10.1016/j.actamat.2022.118126
Google Scholar
[24]
D. Wang, Y. Dong, L. Liu, Effect of pulsed laser and laser-arc hybrid on aluminum/steel riveting-welding hybrid bonding technology, J. Journal of Materials Research and Technology.17, (2022) 1043-1053.
DOI: 10.1016/j.jmrt.2022.01.064
Google Scholar
[25]
W. Dong, H. Pan, M. Lei, Zn penetration and its coupled interaction with the grain boundary during the resistance spot welding of the QP980 steel, J. Scripta Materialia.218, (2022) 114832.
DOI: 10.1016/j.scriptamat.2022.114832
Google Scholar
[26]
Z. Chen, Y. Wang,Y. Lou, User-friendly anisotropic hardening function with non-associated flow rule under the proportional loadings for BCC and FCC metals, J. Mechanics of Materials.165, (2022) 104190.
DOI: 10.1016/j.mechmat.2021.104190
Google Scholar
[27]
Y. Lou, S. Zhang J.W. Yoon, Strength modeling of sheet metals from shear to plane strain tension, J. International Journal of Plasticity.134, (2020) 102813.
DOI: 10.1016/j.ijplas.2020.102813
Google Scholar
[28]
A. Bernatskyi, O.M. Berdnikova, V. Sydorets, Laser Welding of Stainless Steel 321 in Different Welding Positions, J. Solid State Phenomena.313, (2021) 106-117.
DOI: 10.4028/www.scientific.net/ssp.313.106
Google Scholar
[29]
A. Gots, A. Lyukhter, D.A. Kochuev, Influence of Laser Power and Scanning Speed on the Formation of Single Tracks Formed by Laser Cladding, J. Solid State Phenomena.313, (2021) 15-21.
DOI: 10.4028/www.scientific.net/ssp.313.15
Google Scholar
[30]
W. Guo, Z. Wan, P. Peng, Microstructure and mechanical properties of fiber laser welded QP980 steel, J. Journal of Materials Processing Technology.256, (2018) 229-238.
DOI: 10.1016/j.jmatprotec.2018.02.015
Google Scholar
[31]
Y. Hou, J. Min, T.B. Stoughton, A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation, J. International Journal of Plasticity.135, (2020) 102808.
DOI: 10.1016/j.ijplas.2020.102808
Google Scholar
[32]
J. Xue, W. Guo, Y. Zhang, Local microstructure and mechanical characteristics of HAZ and tensile behavior of laser welded QP980 joints, J. Materials Science and Engineering: a.854, (2022) 143862.
DOI: 10.1016/j.msea.2022.143862
Google Scholar
[33]
M. Zhou, Y. Li, Q. Hu, Investigations on edge quality and its effect on tensile property and fracture patterns of QP980, J. Journal of Manufacturing Processes.37, (2019) 509-518.
DOI: 10.1016/j.jmapro.2018.12.028
Google Scholar
[34]
Y. Hou, M. Lee, J. Lin, Experimental characterization and modeling of complex anisotropic hardening in quenching and partitioning (Q&P) steel subject to biaxial non-proportional loadings, J. International Journal of Plasticity.156, (2022) 103347.
DOI: 10.1016/j.ijplas.2022.103347
Google Scholar
[35]
P. Horník, H. Šebestová, J. Novotný, Laser beam oscillation strategy for weld geometry variation, J. Journal of Manufacturing Processes.84, (2022) 216-222.
DOI: 10.1016/j.jmapro.2022.10.016
Google Scholar
[36]
K. Hao, Z. Gao, J. Huang, Comparisons of laser and laser-arc hybrid welded carbon steel with beam oscillation, J. Optics & Laser Technology.157, (2023) 108787.
DOI: 10.1016/j.optlastec.2022.108787
Google Scholar
[37]
U. Reisgen, S. Olschok, T. Twiehaus, Schlieren methodology for laser beam welding under vacuum, J. Vacuum.206, (2022) 111508.
DOI: 10.1016/j.vacuum.2022.111508
Google Scholar
[38]
M. Wu, Z. Luo, Y. Li, Effect of heat source parameters on weld formation and defects of oscillating laser-TIG hybrid welding in horizontal position, J. Journal of Manufacturing Processes.83, (2022) 512-521.
DOI: 10.1016/j.jmapro.2022.09.030
Google Scholar
[39]
Z. Liu, X. Jin, J. Li, Numerical simulation and experimental analysis on the deformation and residual stress in trailing ultrasonic vibration assisted laser welding, J. Advances in Engineering Software.172, (2022) 103200.
DOI: 10.1016/j.advengsoft.2022.103200
Google Scholar
[40]
M. Wu, Z. Luo, Y. Li, Effect of oscillation modes on weld formation and pores of laser welding in the horizontal position, J. Optics & Laser Technology.158, (2023) 108801.
DOI: 10.1016/j.optlastec.2022.108801
Google Scholar