[1]
W. Zhang and J. Xu, "Advanced lightweight materials for Automobiles: A review," Materials and Design, vol. 221. Elsevier Ltd, Sep. 01, 2022.
DOI: 10.1016/j.matdes.2022.110994
Google Scholar
[2]
B. R. Powell, P. E. Krajewski, and A. A. Luo, "Magnesium alloys for lightweight powertrains and automotive structures," in Materials, Design and Manufacturing for Lightweight Vehicles, Elsevier, 2020, p.125–186.
DOI: 10.1016/B978-0-12-818712-8.00004-5
Google Scholar
[3]
M. K. Kulekci, "Magnesium and its alloys applications in automotive industry," International Journal of Advanced Manufacturing Technology, vol. 39, no. 9–10, p.851–865, Nov. 2008.
DOI: 10.1007/s00170-007-1279-2
Google Scholar
[4]
A. A. Luo and A. K. Sachdev, "Applications of magnesium alloys in automotive engineering," in Advances in Wrought Magnesium Alloys, Elsevier, 2012, p.393–426.
DOI: 10.1533/9780857093844.3.393
Google Scholar
[5]
J. Hirsch and T. Al-Samman, "Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications," Acta Mater, vol. 61, no. 3, p.818–843, Feb. 2013.
DOI: 10.1016/j.actamat.2012.10.044
Google Scholar
[6]
N. Birbilis, M. A. Easton, A. D. Sudholz, S. M. Zhu, and M. A. Gibson, "On the corrosion of binary magnesium-rare earth alloys," Corros Sci, vol. 51, no. 3, p.683–689, Mar. 2009.
DOI: 10.1016/j.corsci.2008.12.012
Google Scholar
[7]
G. L. Song, "Corrosion behavior of magnesium alloys and protection techniques," in Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys, Elsevier Inc., 2010, p.3–39.
DOI: 10.1533/9781845699451.1.3
Google Scholar
[8]
M. R. Islam, M. A. Al Mamun, and M. A. Hossain, "Improving Corrosion Resistance in Magnesium and its alloys," IARJSET, vol. 8, no. 2, Feb. 2021.
DOI: 10.17148/iarjset.2021.8218
Google Scholar
[9]
Z. Qiao, Z. Shi, N. Hort, N. I. Zainal Abidin, and A. Atrens, "Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting," Corros Sci, vol. 61, p.185–207, Aug. 2012.
DOI: 10.1016/j.corsci.2012.04.030
Google Scholar
[10]
Y. Chen, T. Ying, Y. Yang, J. Wang, and X. Zeng, "Regulating corrosion resistance of Mg alloys via promoting precipitation with trace Zr alloying," Corrosion Science, vol. 216, p.111106–111106, May 2023.
DOI: 10.1016/j.corsci.2023.111106
Google Scholar
[11]
Z. Rong-chang et al., "Science Review of studies on corrosion of magnesium alloys," 2006. [Online]. Available: www.sciencedirect.comwww.csu.edu.cn/ysxb/
Google Scholar
[12]
Z. Qiao, Z. Shi, N. Hort, N. I. Zainal Abidin, and A. Atrens, "Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting," Corros Sci, vol. 61, p.185–207, Aug. 2012.
DOI: 10.1016/j.corsci.2012.04.030
Google Scholar
[13]
S. K. Sharma et al., "Significance of Alloying Elements on the Mechanical Characteristics of Mg-Based Materials for Biomedical Applications," Crystals, vol. 12, no. 8. MDPI, Aug. 01, 2022.
DOI: 10.3390/cryst12081138
Google Scholar
[14]
G. L. Song, "Effect of tin modification on corrosion of AM70 magnesium alloy," Corros Sci, vol. 51, no. 9, p.2063–2070, Sep. 2009.
DOI: 10.1016/j.corsci.2009.05.031
Google Scholar
[15]
W. Jiang and W. Yu, "In Vitro Degradation Behavior, Mechanical Properties, and Cytocompatibility of Biodegradable Mg-1Zn-xSn Alloys," Crystals (Basel), vol. 12, no. 9, Sep. 2022.
DOI: 10.3390/cryst12091219
Google Scholar
[16]
X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, "In vitro corrosion and biocompatibility of binary magnesium alloys," Biomaterials, vol. 30, no. 4, p.484–498, Feb. 2009.
DOI: 10.1016/j.biomaterials.2008.10.021
Google Scholar
[17]
P. Metalnikov, G. Ben-Hamu, D. Eliezer, and K. S. Shin, "Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy," J Alloys Compd, vol. 777, p.835–849, Mar. 2019.
DOI: 10.1016/j.jallcom.2018.11.003
Google Scholar
[18]
S. H. Kim, J. U. Lee, Y. J. Kim, J. G. Jung, and S. H. Park, "Controlling the microstructure and improving the tensile properties of extruded Mg-Sn-Zn alloy through Al addition," J Alloys Compd, vol. 751, p.1–11, Jun. 2018.
DOI: 10.1016/j.jallcom.2018.04.063
Google Scholar
[19]
Q. Zhang, Q. Li, X. Chen, J. Bao, and Z. Chen, "Effect of Sn addition on the deformation behavior and microstructural evolution of Mg-Gd-Y-Zr alloy during hot compression," Materials Science and Engineering A, vol. 826, Oct. 2021.
DOI: 10.1016/j.msea.2021.142026
Google Scholar
[20]
Z. Yu et al., "Effect of Sn content on the mechanical properties and corrosion behavior of Mg-3Al-xSn alloys," Mater Res Express, vol. 7, no. 7, Jul. 2020.
DOI: 10.1088/2053-1591/aba149
Google Scholar
[21]
W. Jiang, J. Wang, W. Zhao, Q. Liu, D. Jiang, and S. Guo, "Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg–4Zn based alloys," Journal of Magnesium and Alloys, vol. 7, no. 1, p.15–26, Mar. 2019.
DOI: 10.1016/j.jma.2019.02.002
Google Scholar