Improving HfO2 Thick Films for SiC Power Devices by Si, Y and La Doping

Article Preview

Abstract:

We investigated the electrical and structural effects of silicon (Si), yttrium (Y) and lanthanum (La) doping in 10-45 nm thick hafnium dioxide (HfO2) films on silicon carbide (SiC) and Si substrates. We show that the introduction of Si dopants leads to a significant enhancement of the electric breakdown field and a reduction of the leakage current density by elevating the crystallization temperature. This effect becomes stronger with higher Si content. In contrast, Y and La doping does not raise TC but increases the tetragonal and orthorhombic phase portion within the crystalline films and therefore enhances the dielectric constant k. Furthermore, we show that larger grains in crystalline films are associated with a higher leakage current density.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Kol,S., Oral,A. Hf-Based High-κ Dielectrics: A Review. Acta Phys. Pol. A 136, 873-881 (2019).

DOI: 10.12693/aphyspola.136.873

Google Scholar

[2] Richter, C., Schenk, T., Park, M. H., Tscharntke, F. A., Grimley, E. D., LeBeau, J. M., et al. Si Doped Hafnium Oxide—A "Fragile" Ferroelectric System. Adv. Electron. Mater. 3, 1700131 (2017).

DOI: 10.1002/aelm.201700131

Google Scholar

[3] Siddiqui, A., Khosa, R. Y., Usman, M. High-k dielectrics for 4H-silicon carbide: present status and future perspectives. J. Mater. Chem. C 9, 5055–5081 (2021).

DOI: 10.1039/d0tc05008c

Google Scholar

[4] Robertson, J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785 (2000)

DOI: 10.1116/1.591472

Google Scholar

[5] Nawaz, M. On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs. Active and Passive Electronic Components 2015, 1–12 (2015)

DOI: 10.1155/2015/651527

Google Scholar

[6] Narayanan, V., Frank, M. M., eds. Thin films on silicon: electronic and photonic applications. (World Scientific, 2017).

Google Scholar

[7] Lomenzo, P. D., Takmeel, Q., Moghaddam, S., Nishida, T. Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films 615, 139–144 (2016).

DOI: 10.1016/j.tsf.2016.07.009

Google Scholar

[8] Materlik, R., Künneth, C., Falkowski, M., Mikolajick, T., Kersch, A. Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: A first principles study. Journal of Applied Physics 123, 164101 (2018).

DOI: 10.1063/1.5021746

Google Scholar

[9] Holzwarth, U., Gibson, N. The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotech 6, 534–534 (2011).

DOI: 10.1038/nnano.2011.145

Google Scholar

[10] Lu, Y., Hall, S., Tan, L. Z., Mitrovic, I. Z., Davey, W. M., Raeissi, B., et al. Leakage current effects on C-V plots of high-k metal-oxide-semiconductor capacitors. J. Vac. Sci. Technol. B 27, 352 (2009).

DOI: 10.1116/1.3025910

Google Scholar

[11] Weckbrodt, J., Ginot, N., Batard, C., Azzopardi, S. Monitoring of Gate Leakage Current on SiC Power MOSFETs: An Estimation Method for Smart Gate Drivers. IEEE Trans. Power Electron. 36, 8752–8760 (2021).

DOI: 10.1109/tpel.2021.3056648

Google Scholar

[12] Park, M. H., Lee, Y. H., Kim, H. J., Kim, Y. J., Moon, T., Kim, K. D., et al. Ferroelectricity and Antiferroelectricity of Doped Thin HfO 2 -Based Films. Adv. Mater. 27, 1811–1831 (2015).

DOI: 10.1002/adma.201404531

Google Scholar

[13] Schroeder, U., Mueller, S., Mueller, J., Yurchuk, E., Martin, D., Adelmann, C., et al. Hafnium Oxide Based CMOS Compatible Ferroelectric Materials. ECS J. Solid State Sci. Technol. 2, N69–N72 (2013).

DOI: 10.1149/2.010304jss

Google Scholar

[14] Chiu, F.-C. A Review on Conduction Mechanisms in Dielectric Films. Advances in Materials Science and Engineering 2014, 1–18 (2014).

Google Scholar

[15] DiMaria, D. J. Explanation for the oxide thickness dependence of breakdown characteristics of metal-oxide-semiconductor structures. Microelectronic Engineering 36, 317–320 (1997).

DOI: 10.1016/s0167-9317(97)00072-5

Google Scholar

[16] Kauerauf, T., Degraeve, R., Cartier, E., Govoreanu, B., Blomme, P., Kaczer, B., et al. Towards understanding degradation and breakdown of SiO/sub 2//high-k stacks. in Digest. International Electron Devices Meeting, p.521–524 (IEEE, 2002).

DOI: 10.1109/iedm.2002.1175894

Google Scholar

[17] Zacharias, M., Bläsing, J., Veit, P., Tsybeskov, L., Hirschman, K., Fauchet, P. M. Thermal crystallization of amorphous Si/SiO2 superlattices. Applied Physics Letters 74, 2614–2616 (1999).

DOI: 10.1063/1.123914

Google Scholar

[18] Navrotsky, A. Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations. J. Mater. Chem. 15, 1883 (2005).

DOI: 10.1039/b417143h

Google Scholar

[19] Ushakov, S.V., Navrotsky, A., Yang, Y., Stemmer, S., Kukli, K., Ritala, M., et al. Crystallization in hafnia- and zirconia-based systems. Phys. Stat. Sol. (b) 241, 2268–2278 (2004).

DOI: 10.1002/pssb.200404935

Google Scholar