Structure-Mechanical Property Relationships in Carbon Nanotube Yarns

Article Preview

Abstract:

Carbon nanotube (CNT) is an innovative material with significant potential for a wide range of applications, including but not limited to the development of lightweight composite materials or superconductors. A single CNT demonstrates an exceptional degree of tensile strength. CNTs are commonly employed in a structure of yarn, wherein several CNT strands are arranged and aligned together. CNT yarns, on the other hand, have a lower tensile strength than individual CNTs due to the different parameters of the yarn. This study aimed to investigate the effect of different structural parameters on the mechanical properties of CNT yarn. Sixty CNT yarn models with different structures were simulated with the molecular dynamic (MD) simulation. The varied parameters are the chirality of the CNTs, CNTs’ inner diameter, number of walls, crosslink density, and yarn twist angle. Tensile strength results from the simulations were compared concerning the varied parameters, and their influence on the nominal tensile strength of the CNT yarn was studied. It was found that the parameters for the CNT yarn that yields a higher tensile strength are the armchair type CNT with a small diameter, a large number of walls, crosslink density higher than approximately 1%, and a low twist angle.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 364)

Pages:

3-9

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature. 363 (1993) 603–605.

DOI: 10.1038/363603a0

Google Scholar

[2] T.W. Ebbesen, Carbon Nanotubes, Annual Reviews Material Sciences. 24 (1994) 235–264.

Google Scholar

[3] N. Tokumitsu, Y. Shimamura, T. Fujii, Y. Inoue, Effect of Annealing and Diameter on Tensile Property of Spinnable Carbon Nanotube and Unidirectional Carbon Nanotube Reinforced Epoxy Composite, J. Compos. Sci. 6 (2022) 389.

DOI: 10.3390/jcs6120389

Google Scholar

[4] T.H. Nam, K. Goto, Y. Shimamura, Y. Inoue, S. Ogihara, Property improvement of CNT spun yarns and their composites through pressing, stretching and tensioning, Advanced Composite Materials. 28 (2019) 507–524.

DOI: 10.1080/09243046.2019.1610586

Google Scholar

[5] K.I. Tserpes, P. Papanikos, The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes, Composite Structures. 79 (2007) 581–589.

DOI: 10.1016/j.compstruct.2006.02.020

Google Scholar

[6] G. Yamamoto, K. Shirasu, T. Hashida, T. Takagi, J.W. Suk, J. An, R.D. Piner, R.S. Ruoff, Nanotube fracture during the failure of carbon nanotube/alumina composites, Carbon. 49 (2011) 3709–3716.

DOI: 10.1016/j.carbon.2011.04.022

Google Scholar

[7] E.M. Byrne, M.A. McCarthy, Z. Xia, W.A. Curtin, Multiwall Nanotubes Can Be Stronger than Single Wall Nanotubes and Implications for Nanocomposite Design, Phys. Rev. Lett. 103 (2009) 045502.

DOI: 10.1103/PhysRevLett.103.045502

Google Scholar

[8] K. Shirasu, G. Yamamoto, T. Hashida, How do the mechanical properties of carbon nanotubes increase? An experimental evaluation and modeling of the engineering tensile strength of individual carbon nanotubes, Mater. Res. Express. 6 (2019) 055047.

DOI: 10.1088/2053-1591/ab069f

Google Scholar

[9] Y. Xiang, K. Shimoyama, K. Shirasu, G. Yamamoto, Machine Learning-Assisted High-Throughput Molecular Dynamics Simulation of High-Mechanical Performance Carbon Nanotube Structure, Nanomaterials. 10 (2020) 2459.

DOI: 10.3390/nano10122459

Google Scholar

[10] Y. Xiang, G. Yamamoto, A Data Mining Approach to Investigate the Carbon Nanotubes Mechanical Properties via High-Throughput Molecular Simulation, MSF. 1023 (2021) 29–36.

DOI: 10.4028/www.scientific.net/MSF.1023.29

Google Scholar

[11] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter. 14 (2002) 783–802.

DOI: 10.1088/0953-8984/14/4/312

Google Scholar

[12] G. Yamamoto, K. Shirasu, Y. Nozaka, Y. Sato, T. Takagi, T. Hashida, Structure–property relationships in thermally-annealed multi-walled carbon nanotubes, Carbon. 66 (2014) 219–226.

DOI: 10.1016/j.carbon.2013.08.061

Google Scholar

[13] A.F. Ávila, G.S.R. Lacerda, Molecular mechanics applied to single-walled carbon nanotubes, Mat. Res. 11 (2008) 325–333.

DOI: 10.1590/S1516-14392008000300016

Google Scholar

[14] Z.H. Xia, P.R. Guduru, W.A. Curtin, Enhancing Mechanical Properties of Multiwall Carbon Nanotubes via s p.3 Interwall Bridging, Phys. Rev. Lett. 98 (2007) 245501.

DOI: 10.1103/PhysRevLett.98.245501

Google Scholar

[15] B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nature Nanotech. 3 (2008) 626–631.

DOI: 10.1038/nnano.2008.211

Google Scholar

[16] E.T. Thostenson, T.-W. Chou, On the elastic properties of carbon nanotube-based composites: modelling and characterization, J. Phys. D: Appl. Phys. 36 (2003) 573–582.

DOI: 10.1088/0022-3727/36/5/323

Google Scholar

[17] T.H. Nam, K. Goto, Y. Yamaguchi, E.V.A. Premalal, Y. Shimamura, Y. Inoue, K. Naito, S. Ogihara, Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites, Composites Part A: Applied Science and Manufacturing. 76 (2015) 289–298.

DOI: 10.1016/j.compositesa.2015.06.009

Google Scholar

[18] Y. Sun, Q. Chen, Diameter dependent strength of carbon nanotube reinforced composite, Applied Physics Letters. 95 (2009) 021901.

DOI: 10.1063/1.3168520

Google Scholar

[19] C. Li, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology. 63 (2003) 1517–1524.

DOI: 10.1016/S0266-3538(03)00072-1

Google Scholar

[20] G. Yamamoto, Y. Chen, A. Kunitomo, N. Shigemitsu, T. Shindo, Decreasing vacancy-defect sensitivity in multi-walled carbon nanotubes through interwall coupling, Carbon Trends. 11 (2023) 100266.

DOI: 10.1016/j.cartre.2023.100266

Google Scholar