[1]
A.F. Kiselov, V.O. Ziuzin, O.I. Tsebrzhynskyi, A.O. Rudenko, V.S. Yermilov, T.M. Zinchenko, Sotsialno-ekonomichni ta ekolohichni aspekty hromadskoho zdorovia naselennia Mykolaivshchyny. Ekolohiia. 167 (2012) 103–106.
Google Scholar
[2]
M.P. Bashtannik, N.S. Zhemera, Ye.M. Kiptenko, T.V. Kozlenko, Stan zabrudnennia atmosfernoho povitria nad terytoriieiu Ukrainy. Naukovi pratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu. 266 (2014) 70–93.
Google Scholar
[3]
B. Paton, V. Bariakhtar, O. Bakai, I. Nekliudov, Maibutnie atomnoi enerhetyky. Visn. NAN Ukrainy. 4 (2006) 3–13.
Google Scholar
[4]
R. Bohovic, M. Hrnčiar, M. Muroň, J. Chytrý, M. Skalský, M. Černochová, O. Angurets, J. Labohý, Air Pollution in Ukraine as seen from Space: The Effects of the War, World from Space. (2023) 28.
Google Scholar
[5]
Ye.O. Mykhailova, Mozhlyvi sposoby ochyshchennia hazovykh vykydiv vid oksydiv nitrohenu v umovakh vyrobnytstva kaltsynovanoi sody, Ekolohichna bezpeka: problemy i shliakhy vyrishennia: XV mizhnar. nauk.-prakt. konf., 9–13 ver. 2019 r.: zb. nauk. st. (2019) 227–231.
Google Scholar
[6]
K.P. Shrestha, L. Seidel, T. Zeuch, F. Mauß, Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides. Energy & Fuels. 32 (2018) 10202–10217.
DOI: 10.1021/acs.energyfuels.8b01056
Google Scholar
[7]
K.A. Pedersen, M.T. Lewandowski, C. Schulze-Netzer, M. Pasternak, T. Løvås, Ammonia in Dual-Fueled Internal Combustion Engines: Impact on NOx, N2O, and Soot Formation. Energy & Fuels. 37 (2023) 17585–17604.
DOI: 10.1021/acs.energyfuels.3c02549
Google Scholar
[8]
R.M. Choueiri, S. W. Tatarchuk, A. Klinkova, L.D. Chen, Mechanism of ammonia oxidation to dinitrogen, nitrite, and nitrate on β-Ni(OH)2 from first-principles simulations. Electrochem Sci Adv. 2 (2022) 1–10.
DOI: 10.33774/chemrxiv-2021-7z76q
Google Scholar
[9]
A.V. Shapka, M.I. Vorozhbiian, O.V. Kobzev, Mekhanizm homohenno-heterohennoho okyslennia monooksydu azotu kysnem. Informatsiino-keruiuchi systemy na zaliznychnomu transporti. 5 (2001) 115.
Google Scholar
[10]
A.D. Tiulpynov, T.P. Kliachenko, Snyzhenye zahriaznenyia atmosfery hazovymy vybrosamy promyshlennykh predpryiatyi, Khimichna promyslovist Ukrainy. 1–2 (2000) 100–103.
Google Scholar
[11]
M.F. Sheikh, P. Wang, Z. Chen, J.-J. Yin, Innovative catalysts for the selective catalytic reduction of NOx with H2: A systematic review. Fuel. 355 (2024) 129364.
DOI: 10.1016/j.fuel.2023.129364
Google Scholar
[12]
M. Schwefer, R. Maurer, T. Turek, M. Kögel (Krupp Uhde GmbH), DE Patent WO2001051182A1. (2001).
Google Scholar
[13]
G. D. Grab, S.W. Dean, U.S. Patent 4562052A. (2004).
Google Scholar
[14]
N.S. Mosyna, T.Y. Obushenko, Yu.V. Kniazev, Tonkoplenochnye setchatye katalyzatory dlia ochystky otkhodiashchykh hazov. Trudy Odeskoho polytekhnycheskoho unyversyteta. 3 (2001) 288–291.
Google Scholar
[15]
M.S. Souza, A.J. Martins, J.A.S. Ribeiro, A. Campos, A.C. Oliveira, R.F. Jucá, G.D. Saraiva, M.A.M. Torres, E. Rodríguez-Castellón, R.S. Araujo, Selective Catalytic Reduction of NOx by CO over Cu(Fe)/SBA-15 Catalysts: Effects of the Metal Loading on the Catalytic Activity. Catalysts. 13 (2023) 1–23.
DOI: 10.3390/catal13030527
Google Scholar
[16]
J.-H. Choi, J. Hwang, G. Kim, J.-J. Choi, C.-W. Ahn, J.-W. Kim, B.-D. Hahn, W.-H. Yoon, Y. Min, Catalyst adhesion enhancement by porous TiO2 layer formed on anodized titanium honeycomb substrate. Ceramics International. 47 (2020) 7241–7247.
DOI: 10.1016/j.ceramint.2020.10.173
Google Scholar
[17]
H. Zhou, B. Gabbitas, S. Mathews, D. Zhang, Titanium and titanium alloy coatings for corrosion protection. Ti 2011 - Proceedings of the 12th World Conference on Titanium. 3 (2012) 1906–1910.
Google Scholar
[18]
A.Ia. Loboiko, V.A. Vekshyn, N.B. Markova, M.Y. Vorozhbyian, L.P. Shapareva, Yssledovanye vlyianyia tekhnolohyy pryhotovlenyia katalyzatora na raspredelenye katalytychesky aktyvnoho veshchestva po poverkhnosty nosytelia. Suchasni problemy tekhnolohii neorhanichnykh rechovyn: zbirnyk naukovykh prats DDTU. 2 (2008) 59–62.
Google Scholar
[19]
J. Yang, A.D. Salman, P. Blanco-García, A review of measurement techniques of mechanical properties of the catalyst layer in catalytic converters. Johnson Matthey Technology Review. 63 (2019) 177–190.
DOI: 10.1595/205651319x15475632460410
Google Scholar
[20]
C. Couroyer, M. Ghadiri, P. Laval, N. Brunard, F. Kolenda, Methodology for Investigating the Mechanical Strength of Reforming Catalyst Beads. Oil & Gas Science and Technology. Rev. IFP. 55 (2000) 67–85.
DOI: 10.2516/ogst:2000004
Google Scholar
[21]
M. Fujita, K. Kuki, An Evaluation of Mechanical Properties with the Hardness of Building Steel Structural Members for Reuse by NDT. Metals. 6 (2016) 247.
DOI: 10.3390/met6100247
Google Scholar
[22]
L. Liu, A. Corma, Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews. 118 (2018) 4981–5079.
DOI: 10.1021/acs.chemrev.7b00776
Google Scholar
[23]
M.M. Shyshkov. Marochnyk stalei i splaviv. Dovidnyk. Vyd. 3-ye, dopovnene, Donetsk, 2000.
Google Scholar
[24]
M.V. Ved, M.D. Sakhnenko, Katalitychni ta zakhysni pokryttia splavamy i skladnymy oksydamy: elektrokhimichnyi syntez, prohnozuvannia vlastyvostei, NTU «KhPI», Kharkiv, 2010.
Google Scholar
[25]
N.B. Markova, M.Y. Vorozhbyian, Y.V. Bahrova, V.A. Vekshyn, Razrabotka metallycheskoho nosytelia katalytycheskoi systemi s zadannymy kharakterystykamy. Vestnyk natsyonalnoho tekhnycheskoho unyversyteta «KhPI». 17 (2002) 49–52.
Google Scholar
[26]
D.J. Campbell, M.S. Baliss, J.J. Hinman, J.W. Ziegenhorn, M.J. Andrews, K.J. Stevenson, Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources. J. Chem. Educ. 90 (2013) 629–632.
DOI: 10.1021/ed300245e
Google Scholar
[27]
G. Shevchenko, A. Pilipenko, T. Shkolnikova, S. Gura, O. Smirnova, Production of Nanosize Interference-colored Oxide Films on the Ti6Al4V Alloy Surface Using the Method of Electrochemical Oxydation in Succinate Eletrolytes, 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine. (2020) 216–219.
DOI: 10.1109/elnano50318.2020.9088771
Google Scholar
[28]
V.Y. Toshynskyi, M.Y. Vorozhbyian, V.A. Vekshyn, N.B. Markova, S.L. Chepurnoy, Prymenenye metallycheskoho tytana dlia pryhotovlenyia nosytelia katalyzatora ochystky vykhlopnykh nytroznykh hazov, Sovremennye problemy khymycheskoi tekhnolohyy neorhanycheskykh veshchestv: mezhdunar. nauchn.-tekhn. konf., 2001 h.: tezy dokl. (2001) 235–238.
Google Scholar
[29]
V.A. Vekshyn, V.Y. Toshynskyi, M.Y. Vorozhbyian, S.L. Chepurnoy, Razrabotka y yssledovanye aktyvnosty katalyzatora ochystky hazovykh vybrosov ot oksydov azota. Vestnyk Natsyonalnoho tekhnycheskoho unyversyteta «KhPI». 3 (2001) 25–27.
Google Scholar
[30]
N.Z.W. Wang, J. Xu, B. Ma, Z. Zhang, Q. Jin, E. Bunte, J. Hüpkes, H. Bochem, Initial stage of pore formation process in anodic aluminum oxide template. Journal of Solid State Electrochemistry. 14 (2010) 1377–1382.
DOI: 10.1007/s10008-009-0959-2
Google Scholar
[31]
M. Liao, H. Ma, D. Yu, H. Han, X. Xu, X. Zhu, Formation mechanism of anodic titanium oxide in mixed electrolytes. Materials Research Bulletin. 95 (2017) 539–545.
DOI: 10.1016/j.materresbull.2017.08.041
Google Scholar
[32]
C.W. Ng, A.S. Mahmud, M.N. Ahmad, M.F. Razali, Y. Liu, Estimation of titanium oxide layer thickness on thermally oxidized NiTi alloy based on color variations. Materialwiss, Werkstofftech. 53 (2022) 47.
DOI: 10.1002/mawe.202100084
Google Scholar
[33]
Y.A. Tokareva, B.Y. Bairachnyi, Nanostrukturyrovannye anodnye oksydnye pokrytyia na ventylnykh metallakh – zadachy y vozmozhnosty. Nanosystemy, nanomaterialy, nanotekhnolohii. 15 (2017) 713–740.
Google Scholar
[34]
W. Junshi, X. Peng, H. Wenbin, L. Dong, Q. Ye, M. Yongli, Ionic liquids as electrolytes in aluminum electrolysis. Front. Chem. 3 (2022) 1–17.
Google Scholar
[35]
E. Amine, J. El Fallah, A. El Ballouti, A. Hajjaji, S. Touhtouh, Y. Boughaleb, Quantitative and qualitative analysis for a better understanding of the aging and degradation mechanisms of electrolytes used in supercapacitors. Journal of Materials Science: Materials in Electronics. 33 (2022) 4568–4578.
DOI: 10.1007/s10854-021-07648-x
Google Scholar