Development and Implementation of an Algorithm for Predicting the Intensity of Sorption of Hazardous Gaseous Materials

Article Preview

Abstract:

An algorithm for predicting the intensity of sorption of gaseous materials released into the atmosphere as a result of an accident is proposed. The algorithm consists of three hierarchical levels: monitoring the parameters of gaseous material emission, predicting the consequences of gaseous material emission before and after sorption, and making a management decision. The first hierarchical level includes 4 blocks: obtaining information from the chemical reconnaissance group and the facility representative on the type, amount of hazardous gaseous materials, release intensity and scale of the accident; obtaining information from the hydrometeorological service on temperature, atmospheric pressure, wind direction and speed in the accident area; processing the information received; information on the availability of forces and means for sorption of hazardous gaseous materials. The second hierarchical level also includes 4 blocks: readiness of forces and means for sorption of hazardous gaseous materials; calculation with sorption; calculation without sorption; determination of the boundaries of the chemical damage zone according to the established criteria. At the third hierarchical level, there is 1 block: making a management decision. The software implementation of the proposed algorithm was carried out. The use of the developed algorithm and its software implementation will increase the speed and accuracy of predicting the consequences of the release of hazardous gaseous materials in an accident.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 364)

Pages:

101-112

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies. 2/10(92) (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[2] A. Vasenko, O. Rybalova, O. Kozlovskaya, A study of significant factors affecting the quality of water in the Oskil River (Ukraine). Eastern-European Journal of Enterprise Technologies. 3/10(81) (2016) 48–55.

DOI: 10.15587/1729-4061.2016.72415

Google Scholar

[3] V. Andronov, B. Pospelov, E. Rybka, Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. Eastern-European Journal of Enterprise Technologies. 4/5 (82) (2016) 38–44.

DOI: 10.15587/1729-4061.2016.75063

Google Scholar

[4] V. Tiutiunyk, H. Ivanets, I. Tolkunov, E. Stetsyuk, System approach for readiness assessment units of civil defense to actions at emergency situations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 1 (2018) 99–105.

DOI: 10.29202/nvngu/2018-1/7

Google Scholar

[5] K. Korytchenko, O. Sakun, D. Dubinin, Y. Khilko, E. Slepuzhnikov, A. Nikorchuk, I. Tsebriuk, Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration. Eastern-European Journal of Enterprise Technologies. 3/5 (93) (2018) 47–54.

DOI: 10.15587/1729-4061.2018.134193

Google Scholar

[6] Y. Danchenko, V. Andronov, E. Barabash, T. Obigenko, E. Rybka, R. Meleshchenko, A. Romin, Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies. 6/12 (90) (2017) 4–12.

DOI: 10.15587/1729-4061.2017.118565

Google Scholar

[7] V. Barannik, Y. Babenko, O. Kulitsa, V. Barannik, A. Khimenko, O. Matviichuk-Yudina, Significant microsegment transformants encoding method to increase the availability of video information resource. ATIT 2020 - Proceedings: 2020 2nd IEEE International Conference on Advanced Trends in Information Theory. 9349256 (2020) 52-56.

DOI: 10.1109/atit50783.2020.9349256

Google Scholar

[8] M. Vasiliev, I. Movchan, O. Koval, Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 5 (2001) 106–113

Google Scholar

[9] M. Kustov, V. Kalugin, V. Tutunik, O. Tarakhno, Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii. 1 (2019) 92–99.

DOI: 10.32434/0321-4095-2019-122-1-92-99

Google Scholar

[10] A. Semko, M. Beskrovnaya, S. Vinogradov, I. Hritsina, N. Yagudina, The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics (Poland). 3 (2017) 655–664.

Google Scholar

[11] V.V. Tatarinov, U.V. Prus, A.A. Kirsanov, Decision support software for chemical accident elimination management. AIP Conference Proceedings. 2195 (2019) 020076.

DOI: 10.1063/1.5140176

Google Scholar

[12] M. Martínez-García, Y. Zhang, K. Suzuki, Y.D. Zhang, Deep Recurrent Entropy Adaptive Model for System Reliability Monitoring. IEEE Transactions on Industrial Informatics. 17(2) (2021) 839–848.

DOI: 10.1109/tii.2020.3007152

Google Scholar

[13] F. Khan, S. Rathnayaka, S. Ahmed, Methods and models in process safety and risk management: Past, present and future. Process Safety and Environmental Protection. 98 (2015) 116-147.

DOI: 10.1016/j.psep.2015.07.005

Google Scholar

[14] B. Pospelov, V. Kovrehin, E. Rybka, O. Krainiukov, O. Petukhova, T. Butenko, P. Borodych, I. Morozov, O. Horbov, I. Hrachova, Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies. 5/9 (107) (2020) 49–56.

DOI: 10.15587/1729-4061.2020.213892

Google Scholar

[15] O. Rybalova, S. Artemiev, Development of a procedure for assessing the environmental risk of the surface water status deterioration. Eastern-European Journal of Enterprise Technologies. 5/10 (89) (2017) 67–76.

DOI: 10.15587/1729-4061.2017.112211

Google Scholar

[16] O.M. Pshinko, M.M. Biliaiev, O.Y. Gunko, Localization of the air pollution zone in case of liquidation of an accident with chemically hazardous cargo. Science and Transport Progress. 27 (2009) 143–148.

DOI: 10.15802/stp2009/14261

Google Scholar

[17] S.Ia. Maistrenko, V.P. Bespalov, K.V. Khurtsylava, T.O. Zahreba, Prototypna versiia systemy «Povitria»: kerivnytstvo korystuvacha. Kyiv, 2018 [in Ukrainian].

Google Scholar

[18] B. Pospelov, E. Rybka, R. Meleshchenko, P. Borodych, S. Gornostal, Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies. 1/10 (97) (2019) 29–35.

DOI: 10.15587/1729-4061.2019.155027

Google Scholar

[19] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, S. Gornostal, Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies. 5/10 (2018) 25–30.

DOI: 10.15587/1729-4061.2018.142995

Google Scholar

[20] D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies. 2/10 (92) (2018) 38–43.

DOI: 10.15587/1729-4061.2018.127865

Google Scholar

[21] B. Pospelov, V. Andronov, E. Rybka, V. Popov, A. Romin, Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies. 1/10 (91) (2018) 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[22] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, N. Maksymenko, R. Meleshchenko, Y. Bezuhla, I. Hrachova, R. Nesterenko, A. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies. 4/10 (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[23] B. Pospelov, V. Kovrehin, E. Rybka, O. Krainiukov, O. Petukhova, T. Butenko, P. Borodych, I. Morozov, O. Horbov, I. Hrachova, Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies. 5/9(107) (2020) 49–56.

DOI: 10.15587/1729-4061.2020.213892

Google Scholar

[24] S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko, Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies. 3/10(87) (2017) 63–73.

DOI: 10.15587/1729-4061.2017.102314

Google Scholar

[25] B. Pospelov, V. Andronov, E. Rybka, V. Popov, O. Semkiv, Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies. 2/10(92) (2018) 44–49.

DOI: 10.15587/1729-4061.2018.125926

Google Scholar

[26] V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, A.  Rud, K.  Karpets, Y. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies. 6(10) (2020) 14-22.

DOI: 10.15587/1729-4061.2020.218714

Google Scholar

[27] B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, S. Harbuz, Y.  Bezuhla, I. Morozov, A. Kuruch, O. Saliyenko, R. Vasylchenko, Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies. 2/10 (2020) 6–12.

DOI: 10.15587/1729-4061.2020.200140

Google Scholar

[28] D. Dubinin, V. Avetisyan, K. Ostapov, S. Shevchenko, S. Hovalenkov, D. Beliuchenko, A. Maksymov, O. Cherkashyn, Investigation of the effect of carbon monoxide on people in case of fire in a building. Sigurnost. 62/4 (2020) 347–357.

DOI: 10.31306/s.62.4.2

Google Scholar

[29] V.S. Babkov, T.Yu. Tkachenko, Analiz matematicheskih modeley rasprostraneniya primesey ot tochechnyih istochnikov. Nauchnyie trudyi DonNTU. Seriya «Informatika, kibernetika i vyichislitelnaya tehnika». 13(185) (2011) 147–155 [in Ukrainian].

Google Scholar

[30] Recommended Models // US Environmental Protection Agency, URL: http://www.epa.gov.

Google Scholar

[31] A.J. Cimorelli, S.G. Perry, A. Venkatram [et al.], AERMOD: A dispersion model for industrial sourceapplications Part I: General model formulation and boundary layer characterization. (accepted for publication). Journal of Applied Meteorology. 44(5) (2005) 682–693.

DOI: 10.1175/jam2227.1

Google Scholar

[32] T. Elperin, A. Fominykh, B. Krasovitov, A. Vikhansky, Effect of rain scavenging on altitudinal distribution of soluble gaseous pollutants in the atmosphere. Atmospheric Environment. 45(14) (2011) 2427–2433.

DOI: 10.1016/j.atmosenv.2011.02.008

Google Scholar

[33] M. Kustov, E. Slepuzhnikov, V. Lipovoy, I. Khmyrov, D. Firdovsi, O. Buskin, Procedure for implementation of the method of artificial deposition of radioactive substances from the atmosphere. Nuclear and Radiation Safety. 3/83 (2019) 13–25.

DOI: 10.32918/nrs.2019.3(83).02

Google Scholar

[34] S. Gautam, T. Liu, D. Cole, Sorption, Structure and Dynamics of CO2 and Ethane in Silicalite at High Pressure: A Combined Monte Carlo and Molecular Dynamics Simulation Study. Molecules. 24(1) (2019) 99.

DOI: 10.3390/molecules24010099

Google Scholar

[35] A.K. Hua, P.S. Lakey, M. Shiraiwa, Multiphase Kinetic Multilayer Model Interfaces for Simulating Surface and Bulk Chemistry for Environmental and Atmospheric Chemistry Teaching. Journal of Chemical Education. 99(3) (2022) 1246–1254.

DOI: 10.1021/acs.jchemed.1c00931

Google Scholar

[36] M.V. Kustov, O.Ie. Basmanov, A.S. Melnychenko, Modeliuvannia zony khimichnoho urazhennia v umovakh lokalizatsii nadzvychainoi sytuatsii. Problemy nadzvychainykh sytuatsii. 32 (2020) 142–157 [in Ukrainian].

Google Scholar

[37] M.V. Kustov, O.Ie. Basmanov, O.A. Tarasenko, A.S. Melnychenko, Prohnozuvannia masshtabiv khimichnoho urazhennia za umov osadzhennia nebezpechnoi rechovyny. Problemy nadzvychainykh sytuatsii. 33 (2021) С. 72–83 [in Ukrainian].

Google Scholar

[38] M. Kustov, A. Melnychenko, O. Basmanov, O. Tarasenko, Modeling of Gas Sorption Process by Dispersed Liquid Flow. Materials of Science Forum. 1068 (2022) 239–247.

DOI: 10.4028/p-jdydlo

Google Scholar

[39] A. Melnychenko, M. Kustov, O. Basmanov, O. Tarasenko, O. Bogatov, M. Kravtsov, O. Petrova, T. Pidpala, O. Karatieieva, N. Shevchuk, Devising a Procedure to Forecast the Level of Chemical Damage to the Atmosphereduring Active Deposition of Dangerous Gases. Eastern-European Journal of Enterprise Technologies. 1(10(115)) (2022) 31–40.

DOI: 10.15587/1729-4061.2022.251675

Google Scholar

[40] M. Kustov, A. Melnychenko, D. Taraduda, A. Korogodska, Research of the chlorine sorption processes when its deposition by water aerosol. Materials of Science Forum. 1068 (2021) 361–373.

DOI: 10.4028/www.scientific.net/msf.1038.361

Google Scholar