[1]
W.C. Yu, G.Q. Zhang, Y.H. Liu, L. Xu, D.X. Yan, H.D. Huang, J.H. Tang, J.Z. Xu, Z.M. Li, Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chemical Engineering Journal. 373 (2019) 556–564.
DOI: 10.1016/j.cej.2019.05.074
Google Scholar
[2]
S.N.A. Rusly, K.A. Matori, I. Ismail, Z. Abbas, Z. Awang, M.M.M. Zulkimi, F.M. Idris, M.H.M. Zaid, N.D. Zulfikri, Microwave absorption properties of single– and double–layer coatings based on strontium hexaferrite and graphite nanocomposite. Journal of Materials Science: Materials in Electronics. 29 (2018) 14031–14045.
DOI: 10.1007/s10854-018-9535-9
Google Scholar
[3]
D. Wanasinghe, F. Aslani, A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering. 176 (2019) 107207.
DOI: 10.1016/j.compositesb.2019.107207
Google Scholar
[4]
S.N.A. Rusly, I. Ismail, K.A. Matori, Z. Abbas, A.H. Shaari, Z. Awang, I.R. Ibrahim, F.M. Idris, M.H. Mohd Zaid, M.K.A. Mahmood, I.H. Hasan, Influence of different BFO filler content on microwave absorption performances in BiFeO3/epoxy resin composites. Ceramics International. 46 (2020) 737–746.
DOI: 10.1016/j.ceramint.2019.09.027
Google Scholar
[5]
V. Stancu, A. Galatanu, M. Enculescu, M. Onea, B. Popescu, P. Palade, M. Aradoaie, R. Ciobanu, L. Pintilie, Influences of dispersions' shapes and processing in magnetic field on thermal conductibility of PDMS–Fe3O4 composites. Materials. 14(13) (2021) 3696.
DOI: 10.3390/ma14133696
Google Scholar
[6]
B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad, Y. Kazemi, C.B. Park, Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon. 127 (2018) 469–478.
DOI: 10.1016/j.carbon.2017.11.032
Google Scholar
[7]
F. Menga, H. Wanga, F. Huanga, Y. Guoa, Z. Wanga, D. Huib, Z.Zhou, Graphene-based microwave absorbing composites: A review and prospective. Composites Part B. 137 (2018) 260–277.
DOI: 10.1016/j.compositesb.2017.11.023
Google Scholar
[8]
M. Bibi, S.M. Abbas, N. Ahmad, B. Muhammad, Z. Iqbal, U.A. Rana, S.U. Khane, Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X–band. Composites Part B: Engineering. 114 (2017) 139–48.
DOI: 10.1016/j.compositesb.2017.01.034
Google Scholar
[9]
F. Wang, X. Wang, J.F. Zhu, H.B. Yang, X.G. Kong, X. Liu, Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties. Scientific Reports. 6 (2016) 37892.
DOI: 10.1038/srep37892
Google Scholar
[10]
R. Lv, F. Kang, J. Gu, X. Gui, J. Wei, K. Wang D. Wu, Carbon nanotubes filled with ferromagnetic alloy nanowires: lightweight and wide–band microwave absorber. Applied Physics Letters. 93 (2008) 223105.
DOI: 10.1063/1.3042099
Google Scholar
[11]
Q.H. Liu, X.H. Xu, W.H. Xia, R.C. Che, C. Chen, Q. Cao, J. He, Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography, Nanoscale. 7 (2015) 1736–43.
DOI: 10.1039/c4nr05547k
Google Scholar
[12]
H.L. Lv, G.B. Jia, M. Wang, C.M. Shang, H.Q. Zhang, Y.W. Du, Hexagonal–cone like of Fe50Co50 with broad frequency microwave absorption: effect of ultrasonic irradiation time. Journal of Alloys and Compounds. 615 (2014) 1037–42.
DOI: 10.1016/j.jallcom.2014.07.118
Google Scholar
[13]
V. Lebedev, T. Tykhomyrova, O. Shestopalov,O. Troshin, T. Melnik, Modeling the optimal composition of structural epoxy composites filled with dispersed metal waste. Key Engineering Materials. 864 (2020) 250–256.
DOI: 10.4028/www.scientific.net/kem.864.250
Google Scholar
[14]
V. Lebedev, R. Kryvobok, A. Cherkashina, A. Bliznyuk, G. Lisachuk, T. Tykhomyrova, Design and research polymer composites for absorption of electromagnetic radiation. Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). (2022) 1–4.
DOI: 10.1109/khpiweek57572.2022.9916467
Google Scholar
[15]
V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Petroleum and Coal. 63(3) (2021) 646–654.
Google Scholar
[16]
V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Y. Nikolaichuk, Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Petroleum and Coal. 63(4) (2021) 953–962.
Google Scholar
[17]
V. Lebedev, T. Tykhomyrova, I. Litvinenko, S. Avina, Z. Saimbetova, Design and Research of Eco-Friendly Polymer Composites. Materials Science Forum. 1006 (2020) 259–266.
DOI: 10.4028/www.scientific.net/msf.1006.259
Google Scholar
[18]
V. Lebedev, T. Tykhomyrova, O. Filenko, A. Cherkashina, O. Lytvynenko, Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Materials Science Forum. 1038 (2021) 168–174.
DOI: 10.4028/www.scientific.net/msf.1038.168
Google Scholar
[19]
V. Lebedev, T. Tykhomyrova, O. Lytvynenko, A. Grekova, S. Avina, Sorption characteristics studies of eco-friendly polymer composites. E3S Web of Conferences. 280 (2021) 11001.
DOI: 10.1051/e3sconf/202128011001
Google Scholar
[20]
V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Petroleum and Coal. 63(3) (2021) 646–654.
Google Scholar
[21]
G. Lisachuk, R. Kryvobok, V. Voloshchuk, O. Lapuzina, A. Zakharov, Study of Technological Features of Celsian Ceramics Creation. Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", NAP (2021).
DOI: 10.1109/nap51885.2021.9568546
Google Scholar
[22]
Sahalai D., Bilets D., Lebedev V., Mysiak V., Miroshnichenko D., Sinitsyna A. Hybrid Biopolymer Nanocomposite Materials for Ecological and Biomedical Applications. Proceedings of the 2022 IEEE 12th International Conference "Nanomaterials: Applications and Properties" (NAP 2022) (2022) 184251.
DOI: 10.1109/nap55339.2022.9934293
Google Scholar
[23]
O. Shestopalov, O. Briankin, V. Lebedev, O. Troshin, A. Muradian, V. Ocheretna, N. Yaremenko, Identifying the properties of epoxy composites filled with the solid phase of wastes from metal enterprises. Eastern-European Journal of Enterprise Technologies. 6(10–102) (2019) 25–31.
DOI: 10.15587/1729-4061.2019.186050
Google Scholar
[24]
G. Lisachuk, R. Kryvobok, O. Lapuzina, M. Maystat, N. Kryvobok, V. Voloshchuk, I. Gusarova, To the problem of the creation of high–temperature radio–absorbing composite ceramic materials. Proceedings of the 2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties (NAP–2018). 1 (2018) 01SPN41.
DOI: 10.1109/nap.2018.8914804
Google Scholar
[25]
X. Tong, Advanced materials and design for electromagnetic interference shielding. CRC Press (2009).
Google Scholar
[26]
A. Shah, Y.H. Wang, H. Huang, L. Zhang, D.X. Wang, L. Zhou, Y.P. Duan, X.L. Dong, Z.D. Zhang, Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/ epoxy resin composite plates. Composite Structures. 131 (2015) 1132–41.
DOI: 10.1016/j.compstruct.2015.05.054
Google Scholar
[27]
A.A. Al–Ghamdi, O.A. Al–Hartomy, F.R. A–Solamy, N. Dishovsky, P. Malinova, P. Atanasova, N. Atanasovde, Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Composites Part B: Engineering. 96 (2016) 231–41.
DOI: 10.1016/j.compositesb.2016.04.039
Google Scholar
[28]
J.T. Hu, T.K. Zhao, X.R. Peng, W.B. Yang, X.L. Ji, T.H. Li, Growth of coiled amorphous carbon nanotube array forest and its electromagnetic wave absorbing properties. Composites Part B: Engineering. 134 (2018) 91–7.
DOI: 10.1016/j.compositesb.2017.09.071
Google Scholar
[29]
T.L. Makarova, P. Geydt, I. Zakharchuk, E. Lahderanta, A.A. Komlev, A.A. Zyrianova, M.A. Kanygin, O.V. Sedelnikova, V.I. Suslyaev, L.G. Bulusheva, A.V. Okotrub, Correlation between manufacturing processes and anisotropic magnetic and electromagnetic properties of carbon nanotube/polystyrene composites. Composites Part B: Engineering. 91 (2016) 505–12.
DOI: 10.1016/j.compositesb.2016.01.040
Google Scholar
[30]
V. Lebedev, O. Shestopalov, S. Vyrovets, A. Masikevych, A. Baranova, Electromagnetic Radiation Absorption Polymer Ceramic-Inorganic Composites Mechanical Properties Optimization. Lecture Notes in Networks and Systems. 808 (2023) 403–412.
DOI: 10.1007/978-3-031-46877-3_36
Google Scholar
[31]
V.V. Lebedev, D.V. Miroshnichenko, R.V. Kryvobok, A.M. Cherkashina, M.O. Riabchenko, Ceramic-inorganic polymer composites for protection against electromagnetic radiation mechanical properties designingI. OP Conference Series: Earth and Environmental Science. 1254 (12023) (2023) 012010.
DOI: 10.1088/1755-1315/1254/1/012010
Google Scholar
[32]
D. Miroshnichenko, V. Lebedev, M. Riabchenko, R. Kryvobok, A. Cherkashina, G. Lisachuk, Y. Soloviev, P. Stukhlyak, A. Mykytyshyn, Use of the Graphite to Obtain Composites for Absorbing Electromagnetic Radiation. Petroleum and Coal. 65(3) (2023) 718–7232023.
Google Scholar
[33]
V.V. Lebedev, D.V. Miroshnichenko, B.B. Nyakuma, V.F Moiseev., O.V. Shestopalov, S.V. Vyrovets, Design of inorganic polymer composites for electromagnetic radiation absorption using potassium titanates. Journal of Engineering Sciences. 10(1) (2023) C1-C8.
DOI: 10.21272/jes.2023.10(1).c1
Google Scholar
[34]
V. Lebedev, D. Miroshnichenko, O. Shestopalov, A. Hrubnik, B.B. Nyakuma, Study of Polymer Inorganic Composites for Electromagnetic Radiation Absorption Using Potassium Titanates. Materials Science Forum. 1096 (2023) 73–9.
DOI: 10.4028/p-rxy201
Google Scholar