Study of Polymer Ceramic-Inorganic Composites for Electromagnetic Radiation Absorption

Article Preview

Abstract:

The aim of the presented work is to study polymer ceramic-inorganic composites for electromagnetic radiation absorbing. Epoxy-based polymer composites modified with ceramic-inorganic graphite-ferromagnetic (CIGF) fillers were first obtained: silicon carbide, chromium oxide Cr2O3, graphite, humic substances and potassium titanate. As polymer matrix epoxy resin based on Epikote Resin MGS LR 285 and Epikure Curing Agent MGS LH 285 was studied. Primary research was directed to study humic substance, silicon carbide SiC, chromium oxide Cr2O3, graphite and potassium titanate nanoparticles introduction impact on polymer ceramic-inorganic composites strength and technological properties. Complex of technological and strength characteristics were researched and compositions with humic substances 0.5 wt%, a higher silicon carbide SiC – 10 wt% content were studied, while chromium oxide Cr2O3, graphite content in 5–25 % wt. range was optimized. Results shows, that addition of humic substances, silicon carbide SiC, chromium oxide Cr2O3, graphite and potassium titanate nanoparticles into the epoxy resin up to 20 wt% filler content increases the composite impact strength and breaking stress during bending. The CIGF fillers complex system using advantage is proven by studying the nature of modification effect on ceramic-ferromagnetic-graphite polymer composites for electromagnetic radiation absorption.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 364)

Pages:

81-88

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.C. Yu, G.Q. Zhang, Y.H. Liu, L. Xu, D.X. Yan, H.D. Huang, J.H. Tang, J.Z. Xu, Z.M. Li, Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chemical Engineering Journal. 373 (2019) 556–564.

DOI: 10.1016/j.cej.2019.05.074

Google Scholar

[2] S.N.A. Rusly, K.A. Matori, I. Ismail, Z. Abbas, Z. Awang, M.M.M. Zulkimi, F.M. Idris, M.H.M. Zaid, N.D. Zulfikri, Microwave absorption properties of single– and double–layer coatings based on strontium hexaferrite and graphite nanocomposite. Journal of Materials Science: Materials in Electronics. 29 (2018) 14031–14045.

DOI: 10.1007/s10854-018-9535-9

Google Scholar

[3] D. Wanasinghe, F. Aslani, A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering. 176 (2019) 107207.

DOI: 10.1016/j.compositesb.2019.107207

Google Scholar

[4] S.N.A. Rusly, I. Ismail, K.A. Matori, Z. Abbas, A.H. Shaari, Z. Awang, I.R. Ibrahim, F.M. Idris, M.H. Mohd Zaid, M.K.A. Mahmood, I.H. Hasan, Influence of different BFO filler content on microwave absorption performances in BiFeO3/epoxy resin composites. Ceramics International. 46 (2020) 737–746.

DOI: 10.1016/j.ceramint.2019.09.027

Google Scholar

[5] V. Stancu, A. Galatanu, M. Enculescu, M. Onea, B. Popescu, P. Palade, M. Aradoaie, R. Ciobanu, L. Pintilie, Influences of dispersions' shapes and processing in magnetic field on thermal conductibility of PDMS–Fe3O4 composites. Materials. 14(13) (2021) 3696.

DOI: 10.3390/ma14133696

Google Scholar

[6] B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad, Y. Kazemi, C.B. Park, Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon. 127 (2018) 469–478.

DOI: 10.1016/j.carbon.2017.11.032

Google Scholar

[7] F. Menga, H. Wanga, F. Huanga, Y. Guoa, Z. Wanga, D. Huib, Z.Zhou, Graphene-based microwave absorbing composites: A review and prospective. Composites Part B. 137 (2018) 260–277.

DOI: 10.1016/j.compositesb.2017.11.023

Google Scholar

[8] M. Bibi, S.M. Abbas, N. Ahmad, B. Muhammad, Z. Iqbal, U.A. Rana, S.U. Khane, Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X–band. Composites Part B: Engineering. 114 (2017) 139–48.

DOI: 10.1016/j.compositesb.2017.01.034

Google Scholar

[9] F. Wang, X. Wang, J.F. Zhu, H.B. Yang, X.G. Kong, X. Liu, Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties. Scientific Reports. 6 (2016) 37892.

DOI: 10.1038/srep37892

Google Scholar

[10] R. Lv, F. Kang, J. Gu, X. Gui, J. Wei, K. Wang D. Wu, Carbon nanotubes filled with ferromagnetic alloy nanowires: lightweight and wide–band microwave absorber. Applied Physics Letters. 93 (2008) 223105.

DOI: 10.1063/1.3042099

Google Scholar

[11] Q.H. Liu, X.H. Xu, W.H. Xia, R.C. Che, C. Chen, Q. Cao, J. He, Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography, Nanoscale. 7 (2015) 1736–43.

DOI: 10.1039/c4nr05547k

Google Scholar

[12] H.L. Lv, G.B. Jia, M. Wang, C.M. Shang, H.Q. Zhang, Y.W. Du, Hexagonal–cone like of Fe50Co50 with broad frequency microwave absorption: effect of ultrasonic irradiation time. Journal of Alloys and Compounds. 615 (2014) 1037–42.

DOI: 10.1016/j.jallcom.2014.07.118

Google Scholar

[13] V. Lebedev, T. Tykhomyrova, O. Shestopalov,O. Troshin, T. Melnik, Modeling the optimal composition of structural epoxy composites filled with dispersed metal waste. Key Engineering Materials. 864 (2020) 250–256.

DOI: 10.4028/www.scientific.net/kem.864.250

Google Scholar

[14] V. Lebedev, R. Kryvobok, A. Cherkashina, A. Bliznyuk, G. Lisachuk, T. Tykhomyrova, Design and research polymer composites for absorption of electromagnetic radiation. Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). (2022) 1–4.

DOI: 10.1109/khpiweek57572.2022.9916467

Google Scholar

[15] V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Petroleum and Coal. 63(3) (2021) 646–654.

Google Scholar

[16] V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Y. Nikolaichuk, Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Petroleum and Coal. 63(4) (2021) 953–962.

Google Scholar

[17] V. Lebedev, T. Tykhomyrova, I. Litvinenko, S. Avina, Z. Saimbetova, Design and Research of Eco-Friendly Polymer Composites. Materials Science Forum. 1006 (2020) 259–266.

DOI: 10.4028/www.scientific.net/msf.1006.259

Google Scholar

[18] V. Lebedev, T. Tykhomyrova, O. Filenko, A. Cherkashina, O. Lytvynenko, Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Materials Science Forum. 1038 (2021) 168–174.

DOI: 10.4028/www.scientific.net/msf.1038.168

Google Scholar

[19] V. Lebedev, T. Tykhomyrova, O. Lytvynenko, A. Grekova, S. Avina, Sorption characteristics studies of eco-friendly polymer composites. E3S Web of Conferences. 280 (2021) 11001.

DOI: 10.1051/e3sconf/202128011001

Google Scholar

[20] V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Petroleum and Coal. 63(3) (2021) 646–654.

Google Scholar

[21] G. Lisachuk, R. Kryvobok, V. Voloshchuk, O. Lapuzina, A. Zakharov, Study of Technological Features of Celsian Ceramics Creation. Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", NAP (2021).

DOI: 10.1109/nap51885.2021.9568546

Google Scholar

[22] Sahalai D., Bilets D., Lebedev V., Mysiak V., Miroshnichenko D., Sinitsyna A. Hybrid Biopolymer Nanocomposite Materials for Ecological and Biomedical Applications. Proceedings of the 2022 IEEE 12th International Conference "Nanomaterials: Applications and Properties" (NAP 2022) (2022) 184251.

DOI: 10.1109/nap55339.2022.9934293

Google Scholar

[23] O. Shestopalov, O. Briankin, V. Lebedev, O. Troshin, A. Muradian, V. Ocheretna, N. Yaremenko, Identifying the properties of epoxy composites filled with the solid phase of wastes from metal enterprises. Eastern-European Journal of Enterprise Technologies. 6(10–102) (2019) 25–31.

DOI: 10.15587/1729-4061.2019.186050

Google Scholar

[24] G. Lisachuk, R. Kryvobok, O. Lapuzina, M. Maystat, N. Kryvobok, V. Voloshchuk, I. Gusarova, To the problem of the creation of high–temperature radio–absorbing composite ceramic materials. Proceedings of the 2018 IEEE 8th International Conference on Nanomaterials: Applications & Properties (NAP–2018). 1 (2018) 01SPN41.

DOI: 10.1109/nap.2018.8914804

Google Scholar

[25] X. Tong, Advanced materials and design for electromagnetic interference shielding. CRC Press (2009).

Google Scholar

[26] A. Shah, Y.H. Wang, H. Huang, L. Zhang, D.X. Wang, L. Zhou, Y.P. Duan, X.L. Dong, Z.D. Zhang, Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/ epoxy resin composite plates. Composite Structures. 131 (2015) 1132–41.

DOI: 10.1016/j.compstruct.2015.05.054

Google Scholar

[27] A.A. Al–Ghamdi, O.A. Al–Hartomy, F.R. A–Solamy, N. Dishovsky, P. Malinova, P. Atanasova, N. Atanasovde, Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Composites Part B: Engineering. 96 (2016) 231–41.

DOI: 10.1016/j.compositesb.2016.04.039

Google Scholar

[28] J.T. Hu, T.K. Zhao, X.R. Peng, W.B. Yang, X.L. Ji, T.H. Li, Growth of coiled amorphous carbon nanotube array forest and its electromagnetic wave absorbing properties. Composites Part B: Engineering. 134 (2018) 91–7.

DOI: 10.1016/j.compositesb.2017.09.071

Google Scholar

[29] T.L. Makarova, P. Geydt, I. Zakharchuk, E. Lahderanta, A.A. Komlev, A.A. Zyrianova, M.A. Kanygin, O.V. Sedelnikova, V.I. Suslyaev, L.G. Bulusheva, A.V. Okotrub, Correlation between manufacturing processes and anisotropic magnetic and electromagnetic properties of carbon nanotube/polystyrene composites. Composites Part B: Engineering. 91 (2016) 505–12.

DOI: 10.1016/j.compositesb.2016.01.040

Google Scholar

[30] V. Lebedev, O. Shestopalov, S. Vyrovets, A. Masikevych, A. Baranova, Electromagnetic Radiation Absorption Polymer Ceramic-Inorganic Composites Mechanical Properties Optimization. Lecture Notes in Networks and Systems. 808 (2023) 403–412.

DOI: 10.1007/978-3-031-46877-3_36

Google Scholar

[31] V.V. Lebedev, D.V. Miroshnichenko, R.V. Kryvobok, A.M. Cherkashina, M.O. Riabchenko, Ceramic-inorganic polymer composites for protection against electromagnetic radiation mechanical properties designingI. OP Conference Series: Earth and Environmental Science. 1254 (12023) (2023) 012010.

DOI: 10.1088/1755-1315/1254/1/012010

Google Scholar

[32] D. Miroshnichenko, V. Lebedev, M. Riabchenko, R. Kryvobok, A. Cherkashina, G. Lisachuk, Y. Soloviev, P. Stukhlyak, A. Mykytyshyn, Use of the Graphite to Obtain Composites for Absorbing Electromagnetic Radiation. Petroleum and Coal. 65(3) (2023) 718–7232023.

Google Scholar

[33] V.V. Lebedev, D.V. Miroshnichenko, B.B. Nyakuma, V.F Moiseev., O.V. Shestopalov, S.V. Vyrovets, Design of inorganic polymer composites for electromagnetic radiation absorption using potassium titanates. Journal of Engineering Sciences. 10(1) (2023) C1-C8.

DOI: 10.21272/jes.2023.10(1).c1

Google Scholar

[34] V. Lebedev, D. Miroshnichenko, O. Shestopalov, A. Hrubnik, B.B. Nyakuma, Study of Polymer Inorganic Composites for Electromagnetic Radiation Absorption Using Potassium Titanates. Materials Science Forum. 1096 (2023) 73–9.

DOI: 10.4028/p-rxy201

Google Scholar