[1]
J.M.K. Al-zyadi, H.I. Asker, and K.L. Yao, The half-metallic properties of bulk and the (111), (110) and (001) surfaces for the full Heusler alloy Zr2VIn. Physica E Low-dimensional Systems and Nanostructures, 2020. 122: pp.114196-114204. Doi: https://doi.org/10.1016/j.elspec.2021.147060 https://scholar.google.com/citations?view_op=view_citation&hl=en&user=6iifSSsAAAAJ&citation_for_view=6iifSSsAAAAJ:Se3iqnhoufwC
DOI: 10.1016/j.physe.2020.114196
Google Scholar
[2]
V. Alijani, et al., Quaternary half-metallic Heusler ferromagnets for spintronics applications. Physical Review B, 2011. 83: pp.184428-184435. Doi: https://doi.org/10.1103/PhysRevB.83.184428 https://scholar.google.com/scholar?q=V.+Alijani,+et+al.,+Phys.+Rev.+B+83+184428+(2011)&hl=ar&as_sdt=0&as_vis=1&oi=scholart
DOI: 10.1103/physrevb.83.184428
Google Scholar
[3]
W.H. Xie, B.G. Liu, and D.G. Pettifor, Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure. Physical Review B, 2003. 68 (13): pp.134407-134414. Doi: 10.1103/PhysRevB.68.134407 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=DOI%3A+10.1103%2FPhysRevB.68.134407&btnG=
DOI: 10.1103/physrevb.68.134407
Google Scholar
[4]
K.I. Kobayashi, et al., Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 1998. 395: pp.677-680. Doi: https://doi.org/10.1038/27167 https://scholar.google.com/scholar?q=K.I.+Kobayashi,+et+al.,+Nature+395+677+(1998)&hl=ar&as_sdt=0&as_vis=1&oi=scholart
DOI: 10.1038/27167
Google Scholar
[5]
K. Schwarz, CrO2 predicted as a half-metallic ferromagnet. Journal of Physics F: Metal Physics, 1986. 16: pp. L211- L215. Doi: 10.1088/0305-4608/16/9/002 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=DOI+10.1088%2F0305-4608%2F16%2F9%2F002&btnG=
DOI: 10.1088/0305-4608/16/9/002
Google Scholar
[6]
C. Berger, et al., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 2004. 108 52: pp.19912-19916.Doi: https://doi.org/10.1021/jp040650f https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1021%2Fjp040650f&btnG=
DOI: 10.1021/jp040650f
Google Scholar
[7]
A. Hashimoto, et al., Direct evidence for atomic defects in graphene layers. Nature, 2004. 430: pp.870-873. Doi: https://doi.org/10.1038/nature02817 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1038%2Fnature02817&btnG=
DOI: 10.1038/nature02817
Google Scholar
[8]
K.S. Novoselov, et al., Electric field effect in atomically thin carbon films. Science, 2004. 306: pp.666-669.Doi: 10.1126/science.1102896 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=DOI%3A+10.1126%2Fscience.1102896&btnG=
Google Scholar
[9]
K.S. Novoselov, et al., Two-dimensional atomic crystals. Physical Sciences, 2005. 102 (30): pp.10451-10453. Doi: https://doi.org/10.1073/pnas.0502848102 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1073%2Fpnas.0502848102&btnG=
Google Scholar
[10]
J.M.K. Al-zyadi, W.A. Abed, and A.H. Ati, Bulk, surfaces, and interface investigations of electronic and magnetic properties: A case of the half-Heusler alloy MgCaB. Physics Letters A, 2021. 411: pp.127572-127581. Doi: https://doi.org/10.1016/j.physleta.2021.127572 https://scholar.google.com/citations?view_op=view_citation&hl=ar&user=PaPbepQAAAAJ&citation_for_view=PaPbepQAAAAJ:9yKSN-GCB0IC
DOI: 10.1016/j.physleta.2021.127572
Google Scholar
[11]
J.M.K.Al-zyadi, and H.I. Asker, A study half-metallic surfaces of the full-Heusler Sc2CrGe compound and the interface of Sc2CrGe/InSb(111). Journal of Electron Spectroscopy and Related Phenomena, 2021. 249: pp.147060-147071. Doi:https://doi.org/10.1016/ j.elspec.2021.147060 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1016%2Fj.elspec.2021.147060&btnG=
DOI: 10.1016/j.elspec.2021.147060
Google Scholar
[12]
J.M.K. Al-zyadi, A.H. Ati, and K.L. Yao, Bulk and surfaces half‑metallicity of RbSe with zinc‑blende structure: first‑principles study. Appl. Phys. A, 2020. 126 (8):pp.612-619. Doi: https://doi.org/10.1007/s00339-020-03798-7 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=doi%3A+https%3A%2F%2Fdoi.org%2F10.1007%2Fs00339-020-03798-7&btnG=
DOI: 10.1007/s00339-020-03798-7
Google Scholar
[13]
J.M.K. Al-zyadi, G.Y. Gao, and K.L. Yao, The half-metallic properties of the (110) and (001) surfaces of rocksalt VPo: A first-principles study. Journal of Magnetism and Magnetic Materials, 2013. 330: pp.1-5. Doi: http://dx.doi.org/10.1016/j.jmmm.2012.10.027 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jmmm.2012.10.027&btnG=
DOI: 10.1016/j.jmmm.2012.10.027
Google Scholar
[14]
E. Yan, Half-metallic properties in rocksalt and zinc-blende MN (M=Na, K): A first-principles study. Physica B, 2012. 407: pp.879-882. Doi: https://doi.org/10.1016/j.physb.2011.12.106 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=doi%3A+https%3A%2F%2Fdoi.org%2F10.1016%2Fj.physb.2011.12.106&btnG=
DOI: 10.1016/j.physb.2011.12.106
Google Scholar
[15]
Y. Zhang, Y. Qi, and Y. Hu, Half-metallic ferromagnetism in rocksalt NaN and KN from first principles. Journal of Magnetism and Magnetic Materials, 2012. 324: pp.2523-2527. Doi: https://doi.org/10.1016/j.jmmm.2012.03.032 https://scholar.google.com/scholar?q=Y.+Zhang,+Y.+Qi,+and+Y.+Hu,+J.+Magn.+Magn.+Mater.+324+2523+(2012)&hl=ar&as_sdt=0&as_vis=1&oi=scholart
DOI: 10.1016/j.jmmm.2012.03.032
Google Scholar
[16]
D. Engin, C. Kemal, and C.Y. Oztekin, Ab Initio Study on Hypothetical Silver Nitride. Chinese Physics Letters, 2008. 25: pp.2154-2157. https://cpl.iphy.ac.cn/Y2008/V25/I6/02154 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=https%3A%2F%2Fcpl.iphy.ac.cn%2FY2008%2FV25%2FI6%2F02154&btnG=
DOI: 10.1088/0256-307x/25/6/063
Google Scholar
[17]
C. Marquet, F.S. Kaler, and D.F.V. James, Phonon-phonon interactions due to non-linear effects in a linear ion trap. Applied Physics B, 2003. 76: pp.199-208. Doi: https://doi.org/10.1007/s00340-003-1097-7 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1007%2Fs00340-003-1097-7&btnG=
DOI: 10.1007/s00340-003-1097-7
Google Scholar
[18]
A.L. Fetter, and J.D. Walecka, Theoretical mechanics of particles and continua, Mineola, New York, (2003). https://scholar.google.com/scholar?q=A.L.+Fetter,+and+J.D.+Walecka,+Theoretical+mechanics+of+particles+and+continua,+(2003)&hl=ar&as_sdt=0&as_vis=1&oi=scholart
DOI: 10.1121/1.387480
Google Scholar
[19]
M. Sahnoun, et al., Full potential calculation of structural, electronic and optical properties of KMgF3 Materials. Chemistry and Physics, 2005. 91: pp.185-191. Doi: https://doi.org/10.1016/j.matchemphys.2004.11.019 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1016%2Fj.matchemphys.2004.11.019&btnG=
DOI: 10.1016/j.matchemphys.2004.11.019
Google Scholar
[20]
J.M.K. Al-zyadi, et al., The structural, electronic, magnetic, and optical properties of CsTe monolayer: effects of the biaxial strain and electrical field. Journal of Electronic Materials, 2022. 51(5): pp.2346-2356. Doi: https://doi.org/10.1007/s11664-022-09479-w https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1007%2Fs11664-022-09479-w&btnG=
DOI: 10.1007/s11664-022-09479-w
Google Scholar
[21]
Z. G. Szabó, et al., A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 2010. 58: pp.2646-2653. Doi: 10.1109/TMTT.2010.2065310 https://scholar.google.com/scholar?q=Z.+G.+Szab%C3%B3,+et+al.,+IEEE+Transactions+on+Microwave+Theory+and+Techniques,+58+2646+(2010)&hl=ar&as_sdt=0&as_vis=1&oi=scholart
DOI: 10.1109/tmtt.2010.2065310
Google Scholar
[22]
G. Murtaza, M. Yaseen, and S. AyazKhan, Band structure features, chemical bonding and optical properties of Zn3X2 (X = N, P, As) compounds. Journal of Alloys and Compounds, 2017. 728: pp.1226-1234. Doi: https://doi.org/10.1016/j.jallcom.2017.09.100 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=G.+Murtaza%2C+M.+Yaseen%2C+and+S.+AyazKhan%2C+J.+Alloys.+Comp.+728+1226%E2%80%8F+%282017%29&btnG=
DOI: 10.1016/j.jallcom.2017.09.100
Google Scholar
[23]
S. Nabi, et al., Correlation between structural, electronic, and optical response of Ga-doped AlSb for optoelectronic applications: a first principle study. The European Physical Journal B, 2022. 95(3): pp.55-60.Doi: https://doi.org/10.1140/epjb/s10051-022-00287-z https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=doi%3A+https%3A%2F%2Fdoi.org%2F10.1140%2Fepjb%2Fs10051-022-00287-z&btnG=
DOI: 10.1140/epjb/s10051-022-00287-z
Google Scholar
[24]
F. Kafi, et al., Tuning optical properties of MoS2 bulk and monolayer under compressive and tensile strain: A first principles study. Journal of Electronic Materials, 2017. 46: p.6158–6166. Doi: https://doi.org/10.1007/s11664-017-5643-1 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=F.+Kafi%2C+et+al.%2C+J.+Elec.+Mater.+46+6158%E2%80%8F+%282017%29&btnG=
DOI: 10.1007/s11664-017-5643-1
Google Scholar
[25]
M. Hadjab, et al., First-principles investigation of the optical properties for rocksalt mixed metal oxide MgxZn1−xO. Materials Chemistry and Physics, 2016. 182: pp.182-189. Doi: https://doi.org/10.1016/j.matchemphys.2016.07.021 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=M.+Hadjab%2C+et+al.%2C+Mater.+Chem.+Phys.+182+182+%282016%29&btnG=
DOI: 10.1016/j.matchemphys.2016.07.021
Google Scholar
[26]
A.R. Forouhi, and I. Bloomer, Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Physical Review B, 1986. 34(10): pp.7018-7026. Doi: https://doi.org/10.1103/PhysRevB.34.7018 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=A.R.+Forouhi%2C+and+I.+Bloomer%2C+Phys.+Rev.+B+34+7018+%281986%29&btnG=
DOI: 10.1103/physrevb.34.7018
Google Scholar