Impact of Electric Field and Biaxial Strain on the Structural, Phonon, and Optical Features of Bulk and Monolayer Potassium Nitride

Article Preview

Abstract:

First-principles calculations are used within the framework of density functional theory to investigate the electronic, structural, magnetic and optical properties of Potassium Nitride (KN) in the bulk and monolayer states. This compound is dynamically stable according to phonon calculations. The results show that the energy gap decreases from the bulk to the monolayer. The equilibrium lattice constant increases when changing from bulk to monolayer, and the half-metallic (HM) character remains preserved in that case. According to the Slater–Pauling statute (Zt-4), the total magnetic moment equals 2 µB per unit cell. The electric field and biaxial strain affect the monolayer's electronic and magnetic characteristics were investigated. The magnitude of the spin-up channel concerning the energy gap changes under the biaxial strain. In particular, it decreases under tensile strain and increases under compression strain. Given that the values of magnetic moments remain unchanged, the HM property can be preserved for significant strains. When the electric field reaches -0.6 V/nm, the half-metallic property of this compound will be destroyed. It affects the energy gap and eliminates the HM trait since the magnetic moment of the K grew significantly greater than the moment of the N, and the N played a significant role in the realization of the half-metallic characteristic.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 365)

Pages:

121-136

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M.K. Al-zyadi, H.I. Asker, and K.L. Yao, The half-metallic properties of bulk and the (111), (110) and (001) surfaces for the full Heusler alloy Zr2VIn. Physica E Low-dimensional Systems and Nanostructures, 2020. 122: pp.114196-114204. Doi: https://doi.org/10.1016/j.elspec.2021.147060 https://scholar.google.com/citations?view_op=view_citation&hl=en&user=6iifSSsAAAAJ&citation_for_view=6iifSSsAAAAJ:Se3iqnhoufwC

DOI: 10.1016/j.physe.2020.114196

Google Scholar

[2] V. Alijani, et al., Quaternary half-metallic Heusler ferromagnets for spintronics applications. Physical Review B, 2011. 83: pp.184428-184435. Doi: https://doi.org/10.1103/PhysRevB.83.184428 https://scholar.google.com/scholar?q=V.+Alijani,+et+al.,+Phys.+Rev.+B+83+184428+(2011)&hl=ar&as_sdt=0&as_vis=1&oi=scholart

DOI: 10.1103/physrevb.83.184428

Google Scholar

[3] W.H. Xie, B.G. Liu, and D.G. Pettifor, Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure. Physical Review B, 2003. 68 (13): pp.134407-134414. Doi: 10.1103/PhysRevB.68.134407 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=DOI%3A+10.1103%2FPhysRevB.68.134407&btnG=

DOI: 10.1103/physrevb.68.134407

Google Scholar

[4] K.I. Kobayashi, et al., Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 1998. 395: pp.677-680. Doi: https://doi.org/10.1038/27167 https://scholar.google.com/scholar?q=K.I.+Kobayashi,+et+al.,+Nature+395+677+(1998)&hl=ar&as_sdt=0&as_vis=1&oi=scholart

DOI: 10.1038/27167

Google Scholar

[5] K. Schwarz, CrO2 predicted as a half-metallic ferromagnet. Journal of Physics F: Metal Physics, 1986. 16: pp. L211- L215. Doi: 10.1088/0305-4608/16/9/002 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=DOI+10.1088%2F0305-4608%2F16%2F9%2F002&btnG=

DOI: 10.1088/0305-4608/16/9/002

Google Scholar

[6] C. Berger, et al., Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 2004. 108 52: pp.19912-19916.Doi: https://doi.org/10.1021/jp040650f https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1021%2Fjp040650f&btnG=

DOI: 10.1021/jp040650f

Google Scholar

[7] A. Hashimoto, et al., Direct evidence for atomic defects in graphene layers. Nature, 2004. 430: pp.870-873. Doi: https://doi.org/10.1038/nature02817 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1038%2Fnature02817&btnG=

DOI: 10.1038/nature02817

Google Scholar

[8] K.S. Novoselov, et al., Electric field effect in atomically thin carbon films. Science, 2004. 306: pp.666-669.Doi: 10.1126/science.1102896 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=DOI%3A+10.1126%2Fscience.1102896&btnG=

Google Scholar

[9] K.S. Novoselov, et al., Two-dimensional atomic crystals. Physical Sciences, 2005. 102 (30): pp.10451-10453. Doi: https://doi.org/10.1073/pnas.0502848102 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1073%2Fpnas.0502848102&btnG=

Google Scholar

[10] J.M.K. Al-zyadi, W.A. Abed, and A.H. Ati, Bulk, surfaces, and interface investigations of electronic and magnetic properties: A case of the half-Heusler alloy MgCaB. Physics Letters A, 2021. 411: pp.127572-127581. Doi: https://doi.org/10.1016/j.physleta.2021.127572 https://scholar.google.com/citations?view_op=view_citation&hl=ar&user=PaPbepQAAAAJ&citation_for_view=PaPbepQAAAAJ:9yKSN-GCB0IC

DOI: 10.1016/j.physleta.2021.127572

Google Scholar

[11] J.M.K.Al-zyadi, and H.I. Asker, A study half-metallic surfaces of the full-Heusler Sc2CrGe compound and the interface of Sc2CrGe/InSb(111). Journal of Electron Spectroscopy and Related Phenomena, 2021. 249: pp.147060-147071. Doi:https://doi.org/10.1016/ j.elspec.2021.147060 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1016%2Fj.elspec.2021.147060&btnG=

DOI: 10.1016/j.elspec.2021.147060

Google Scholar

[12] J.M.K. Al-zyadi, A.H. Ati, and K.L. Yao, Bulk and surfaces half‑metallicity of RbSe with zinc‑blende structure: first‑principles study. Appl. Phys. A, 2020. 126 (8):pp.612-619. Doi: https://doi.org/10.1007/s00339-020-03798-7 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=doi%3A+https%3A%2F%2Fdoi.org%2F10.1007%2Fs00339-020-03798-7&btnG=

DOI: 10.1007/s00339-020-03798-7

Google Scholar

[13] J.M.K. Al-zyadi, G.Y. Gao, and K.L. Yao, The half-metallic properties of the (110) and (001) surfaces of rocksalt VPo: A first-principles study. Journal of Magnetism and Magnetic Materials, 2013. 330: pp.1-5. Doi: http://dx.doi.org/10.1016/j.jmmm.2012.10.027 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Doi%3A+http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jmmm.2012.10.027&btnG=

DOI: 10.1016/j.jmmm.2012.10.027

Google Scholar

[14] E. Yan, Half-metallic properties in rocksalt and zinc-blende MN (M=Na, K): A first-principles study. Physica B, 2012. 407: pp.879-882. Doi: https://doi.org/10.1016/j.physb.2011.12.106 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=doi%3A+https%3A%2F%2Fdoi.org%2F10.1016%2Fj.physb.2011.12.106&btnG=

DOI: 10.1016/j.physb.2011.12.106

Google Scholar

[15] Y. Zhang, Y. Qi, and Y. Hu, Half-metallic ferromagnetism in rocksalt NaN and KN from first principles. Journal of Magnetism and Magnetic Materials, 2012. 324: pp.2523-2527. Doi: https://doi.org/10.1016/j.jmmm.2012.03.032 https://scholar.google.com/scholar?q=Y.+Zhang,+Y.+Qi,+and+Y.+Hu,+J.+Magn.+Magn.+Mater.+324+2523+(2012)&hl=ar&as_sdt=0&as_vis=1&oi=scholart

DOI: 10.1016/j.jmmm.2012.03.032

Google Scholar

[16] D. Engin, C. Kemal, and C.Y. Oztekin, Ab Initio Study on Hypothetical Silver Nitride. Chinese Physics Letters, 2008. 25: pp.2154-2157. https://cpl.iphy.ac.cn/Y2008/V25/I6/02154 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=https%3A%2F%2Fcpl.iphy.ac.cn%2FY2008%2FV25%2FI6%2F02154&btnG=

DOI: 10.1088/0256-307x/25/6/063

Google Scholar

[17] C. Marquet, F.S. Kaler, and D.F.V. James, Phonon-phonon interactions due to non-linear effects in a linear ion trap. Applied Physics B, 2003. 76: pp.199-208. Doi: https://doi.org/10.1007/s00340-003-1097-7 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1007%2Fs00340-003-1097-7&btnG=

DOI: 10.1007/s00340-003-1097-7

Google Scholar

[18] A.L. Fetter, and J.D. Walecka, Theoretical mechanics of particles and continua, Mineola, New York, (2003). https://scholar.google.com/scholar?q=A.L.+Fetter,+and+J.D.+Walecka,+Theoretical+mechanics+of+particles+and+continua,+(2003)&hl=ar&as_sdt=0&as_vis=1&oi=scholart

DOI: 10.1121/1.387480

Google Scholar

[19] M. Sahnoun, et al., Full potential calculation of structural, electronic and optical properties of KMgF3‏ Materials. Chemistry and Physics, 2005. 91: pp.185-191. Doi: https://doi.org/10.1016/j.matchemphys.2004.11.019 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1016%2Fj.matchemphys.2004.11.019&btnG=

DOI: 10.1016/j.matchemphys.2004.11.019

Google Scholar

[20] J.M.K. Al-zyadi, et al., The structural, electronic, magnetic, and optical properties of CsTe monolayer: effects of the biaxial strain and electrical field. Journal of Electronic Materials, 2022. 51(5): pp.2346-2356. Doi: https://doi.org/10.1007/s11664-022-09479-w https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=Doi%3A+https%3A%2F%2Fdoi.org%2F10.1007%2Fs11664-022-09479-w&btnG=

DOI: 10.1007/s11664-022-09479-w

Google Scholar

[21] Z. G. Szabó, et al., A unique extraction of metamaterial parameters based on Kramers–Kronig relationship‏. IEEE Transactions on Microwave Theory and Techniques, 2010. 58: pp.2646-2653. Doi: 10.1109/TMTT.2010.2065310 https://scholar.google.com/scholar?q=Z.+G.+Szab%C3%B3,+et+al.,+IEEE+Transactions+on+Microwave+Theory+and+Techniques,+58+2646+(2010)&hl=ar&as_sdt=0&as_vis=1&oi=scholart

DOI: 10.1109/tmtt.2010.2065310

Google Scholar

[22] G. Murtaza, M. Yaseen, and S. AyazKhan, Band structure features, chemical bonding and optical properties of Zn3X2 (X = N, P, As) compounds. Journal of Alloys and Compounds, 2017. 728: pp.1226-1234. Doi: https://doi.org/10.1016/j.jallcom.2017.09.100 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=G.+Murtaza%2C+M.+Yaseen%2C+and+S.+AyazKhan%2C+J.+Alloys.+Comp.+728+1226%E2%80%8F+%282017%29&btnG=

DOI: 10.1016/j.jallcom.2017.09.100

Google Scholar

[23] S. Nabi, et al., Correlation between structural, electronic, and optical response of Ga-doped AlSb for optoelectronic applications: a first principle study. The European Physical Journal B, 2022. 95(3): pp.55-60.Doi: https://doi.org/10.1140/epjb/s10051-022-00287-z https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=doi%3A+https%3A%2F%2Fdoi.org%2F10.1140%2Fepjb%2Fs10051-022-00287-z&btnG=

DOI: 10.1140/epjb/s10051-022-00287-z

Google Scholar

[24] F. Kafi, et al., Tuning optical properties of MoS2 bulk and monolayer under compressive and tensile strain: A first principles study. Journal of Electronic Materials, 2017. 46: p.6158–6166. Doi: https://doi.org/10.1007/s11664-017-5643-1 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=F.+Kafi%2C+et+al.%2C+J.+Elec.+Mater.+46+6158%E2%80%8F+%282017%29&btnG=

DOI: 10.1007/s11664-017-5643-1

Google Scholar

[25] M. Hadjab, et al., First-principles investigation of the optical properties for rocksalt mixed metal oxide MgxZn1−xO. Materials Chemistry and Physics, 2016. 182: pp.182-189. Doi: https://doi.org/10.1016/j.matchemphys.2016.07.021 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=M.+Hadjab%2C+et+al.%2C+Mater.+Chem.+Phys.+182+182+%282016%29&btnG=

DOI: 10.1016/j.matchemphys.2016.07.021

Google Scholar

[26] A.R. Forouhi, and I. Bloomer, Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Physical Review B, 1986. 34(10): pp.7018-7026. Doi: https://doi.org/10.1103/PhysRevB.34.7018 https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&as_vis=1&q=A.R.+Forouhi%2C+and+I.+Bloomer%2C+Phys.+Rev.+B+34+7018+%281986%29&btnG=

DOI: 10.1103/physrevb.34.7018

Google Scholar