[1]
V. Khan, S., Paliwal, V., Vikram, V., Kumar, Biomass as Renewable Energy, International Advanced Research Journal in Science, Engineering and Technology. 2 (2015) 301–304.
Google Scholar
[2]
A. Kumar, J. Devernay, I. Researcher, M. Freitas, Special Report on Renewable Energy Sources and Climate Change Mitigation: Hydropower, Cambrige and New York, 2011.
Google Scholar
[3]
IRENA, Future of Wind: Deployment, investment, grid integration and socio-economic aspects, Abu Dhabi, 2019.
Google Scholar
[4]
F. Donatini, Geothermal Power, POWER ENGINEERING Advances and Challenges. (2019) 179–215.
Google Scholar
[5]
A.G. Olabi, M.A. Abdelkareem, Renewable energy and climate change, Renewable and Sustainable Energy Reviews. 158 (2022).
DOI: 10.1016/j.rser.2022.112111
Google Scholar
[6]
O. Almora, L. Vaillant-Roca, G. Garcia-Belmonte, Perovskite Solar Cells: a Brief Introduction and Some Remarks Celdas Solares De Perovskitas: Una Breve Introducc on Y Algunas Consideraciones, 58 (2017) 58–68.
DOI: 10.22541/au.158575974.47833392
Google Scholar
[7]
M.T, K.A, T.K, S.Y, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J Am Chem Soc. 131 (2009) 6050–1.
DOI: 10.1021/ja809598r
Google Scholar
[8]
P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, J.S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications, Chemical Communications. 52 (2016) 2067–2070.
DOI: 10.1039/c5cc08643d
Google Scholar
[9]
M.B. Faheem, B. Khan, C. Feng, M.U. Farooq, F. Raziq, Y. Xiao, Y. Li, All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization, ACS Energy Lett. 5 (2020) 290–320.
DOI: 10.1021/acsenergylett.9b02338
Google Scholar
[10]
D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang, Q. Zhang, All-inorganic cesium lead halide perovskite nanocrystals: Synthesis, surface engineering and applications, J Mater Chem C Mater. 7 (2019) 757–789.
DOI: 10.1039/c8tc04381g
Google Scholar
[11]
J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability, J Am Chem Soc. 139 (2017) 14009–14012.
DOI: 10.1021/jacs.7b07949
Google Scholar
[12]
W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham, Chemically diverse and multifunctional hybrid organic-inorganic perovskites, Nat Rev Mater. 2 (2017) 1–47.
DOI: 10.1038/natrevmats.2016.99
Google Scholar
[13]
Y. Hu, M.F. Aygüler, M.L. Petrus, T. Bein, P. Docampo, Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites, ACS Energy Lett. 2 (2017) 2212–2218.
DOI: 10.1021/acsenergylett.7b00731
Google Scholar
[14]
Y. Jiang, B. Li, T. Zhang, Y. Shi, Q.H. Xu, Photoluminescence Mechanisms of All-Inorganic Cesium Lead Bromide Perovskites Revealed by Single Particle Spectroscopy, ChemNanoMat. 6 (2020) 327–335.
DOI: 10.1002/cnma.201900690
Google Scholar
[15]
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, All-Inorganic Perovskite Solar Cells, J Am Chem Soc. 138 (2016) 15829–15832.
DOI: 10.1021/jacs.6b10227
Google Scholar
[16]
B. Alsayid, J. Jallad, Modeling and Simulation of Photovoltaic Cells/Module/Arrays, International Journal of Research and Reviews in Computer Science. 2 (2011) 1327–1331.
Google Scholar
[17]
A. Kowsar, M. Billah, S. Dey, S.C. Debnath, S. Yeakin, S.F. Uddin Farhad, Comparative Study on Solar Cell Simulators, ICIET 2019 - 2nd International Conference on Innovation in Engineering and Technology. (2019).
DOI: 10.1109/iciet48527.2019.9290675
Google Scholar
[18]
A. Bag, R. Radhakrishnan, R. Nekovei, R. Jeyakumar, Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation, Solar Energy. 196 (2020) 177–182.
DOI: 10.1016/j.solener.2019.12.014
Google Scholar
[19]
A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency, Superlattices Microstruct. 129 (2019) 240–246.
DOI: 10.1016/j.spmi.2019.04.007
Google Scholar
[20]
T. Bendib, H. Bencherif, M.A. Abdi, F. Meddour, L. Dehimi, M. Chahdi, Combined optical-electrical modeling of perovskite solar cell with an optimized design, Opt Mater (Amst). 109 (2020) 110259.
DOI: 10.1016/j.optmat.2020.110259
Google Scholar
[21]
T. Minemoto, M. Murata, Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells, J Appl Phys. 116 (2014).
DOI: 10.1063/1.4891982
Google Scholar
[22]
R. Jeyakumar, A. Bag, R. Nekovei, R. Radhakrishnan, Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells, J Electron Mater. 49 (2020) 3533–3539.
DOI: 10.1007/s11664-020-08041-w
Google Scholar
[23]
S. Ullah, P. Liu, J. Wang, P. Yang, L. Liu, S.E. Yang, H. Guo, T. Xia, Y. Chen, Optimizing the working mechanism of the CsPbBr3-based inorganic perovskite solar cells for enhanced efficiency, Solar Energy. 209 (2020) 79–84.
DOI: 10.1016/j.solener.2020.09.003
Google Scholar
[24]
A. Bag, R. Radhakrishnan, R. Nekovei, R. Jeyakumar, W. Isoe, M. Mageto, C. Maghanga, M. Mwamburi, V. Odari, C. Awino, Thickness Dependence of Window Layer on CH3NH3PbI3-XClX Perovskite Solar Cell, Solar Energy. 2020 (2020) 177–182.
DOI: 10.1155/2020/8877744
Google Scholar
[25]
J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, S. (Frank) Liu, Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation, J Alloys Compd. 818 (2020) 152903.
DOI: 10.1016/j.jallcom.2019.152903
Google Scholar
[26]
D. Huang, P. Xie, Z. Pan, H. Rao, X. Zhong, One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells, J Mater Chem A Mater. 7 (2019) 22420–22428.
DOI: 10.1039/c9ta08465g
Google Scholar
[27]
J. Hua, X. Deng, C. Niu, F. Huang, Y. Peng, W. Li, Z. Ku, Y. bing Cheng, A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation, RSC Adv. 10 (2020) 8905–8909
DOI: 10.1039/d0ra00446d
Google Scholar
[28]
Tanvi, V. Saxena, A. Singh, O. Prakash, A. Mahajan, A.K. Debnath, K.P. Muthe, S.C. Gadkari, Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO2 layer, Solar Energy Materials and Solar Cells. 170 (2017) 127–136.
DOI: 10.1016/j.solmat.2017.05.013
Google Scholar
[29]
N. Mundhaas, Z.J. Yu, K.A. Bush, H.P. Wang, J. Häusele, S. Kavadiya, M.D. McGehee, Z.C. Holman, Series Resistance Measurements of Perovskite Solar Cells Using Jsc–Voc Measurements, Solar RRL. 3 (2019) 5–9.
DOI: 10.1002/solr.201800378
Google Scholar
[30]
M. Wolf, H. Rauschenbach, Resistance effects on measurements, Advanced Energy Conversion. 3 (1963) 455–479.
DOI: 10.1016/0365-1789(63)90063-8
Google Scholar
[31]
L. Zhang, T. Hu, J. Li, L. Zhang, H. Li, Z. Lu, G. Wang, All-Inorganic Perovskite Solar Cells with Both High Open-Circuit Voltage and Stability, Front Mater. 6 (2020) 1–8.
DOI: 10.3389/fmats.2019.00330
Google Scholar
[32]
J. Ding, J. Duan, C. Guo, Q. Tang, Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering, J Mater Chem A Mater. 6 (2018) 21999–22004.
DOI: 10.1039/c8ta02522c
Google Scholar
[33]
Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, Q. Tang, Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V, Solar RRL. 3 (2019) 1–7.
DOI: 10.1002/solr.201800284
Google Scholar