Thickness and Doping Density Influence of a High-Voltage Inorganic Perovskite Solar Cell: A SCAPS 1-D Simulation Study

Article Preview

Abstract:

Recently, all inorganic perovskite solar cells have triggered great attention thanks to the rising performance during their development in solid state photovoltaics showing enhanced characteristics, such as: good stability, high photoluminescence quantum yield, tunable size, and morphology. In this work, a high open-circuit voltage solar cell based on all-inorganic perovskite through SCAPS simulator program is presented by analysing electron transport layer (ETL), perovskite layer, hole transport layer (HTL) thickness and doping density from a FTO/TiO2/CsPbBr3/Spiro-OMeTAD/Au structure were modified to observe its influence on solar cell performance. Therefore, simulation results show that a thicker ETL hinders carrier transport towards the FTO layer due to larger distance which leads to higher recombination rate, reducing carrier’s lifetime. Albeit high doping density values in ETL enhances the overall solar cell performance. As for the absorber layer, while its thickness increases, carrier collection rate decreases due to recombination impacting Voc, which results from thickness increase. Based on the results, solar cell efficiency improvement is attributed to the built-in electric field as absorber layer doping density increases. While HTL thickness has minimum impact on the solar cell output, doping density enhances device parameters significantly. Summarising the results obtained from thickness and doping density simulations, the optimal solar cell operation was obtained at 10 nm, 600 nm, and 100 nm layer thickness as well as 1020 cm-3, 1016 cm-3, and 1020 cm-3 doping density (TiO2, CsPbBr3 and Spiro-OMeTAD). Results from three different sources, collected from literature, were used to compare, and fitting them along with simulation results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 365)

Pages:

137-149

Citation:

Online since:

November 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Khan, S., Paliwal, V., Vikram, V., Kumar, Biomass as Renewable Energy, International Advanced Research Journal in Science, Engineering and Technology. 2 (2015) 301–304.

Google Scholar

[2] A. Kumar, J. Devernay, I. Researcher, M. Freitas, Special Report on Renewable Energy Sources and Climate Change Mitigation: Hydropower, Cambrige and New York, 2011.

Google Scholar

[3] IRENA, Future of Wind: Deployment, investment, grid integration and socio-economic aspects, Abu Dhabi, 2019.

Google Scholar

[4] F. Donatini, Geothermal Power, POWER ENGINEERING Advances and Challenges. (2019) 179–215.

Google Scholar

[5] A.G. Olabi, M.A. Abdelkareem, Renewable energy and climate change, Renewable and Sustainable Energy Reviews. 158 (2022).

DOI: 10.1016/j.rser.2022.112111

Google Scholar

[6] O. Almora, L. Vaillant-Roca, G. Garcia-Belmonte, Perovskite Solar Cells: a Brief Introduction and Some Remarks Celdas Solares De Perovskitas: Una Breve Introducc on Y Algunas Consideraciones, 58 (2017) 58–68.

DOI: 10.22541/au.158575974.47833392

Google Scholar

[7] M.T, K.A, T.K, S.Y, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J Am Chem Soc. 131 (2009) 6050–1.

DOI: 10.1021/ja809598r

Google Scholar

[8] P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, J.S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications, Chemical Communications. 52 (2016) 2067–2070.

DOI: 10.1039/c5cc08643d

Google Scholar

[9] M.B. Faheem, B. Khan, C. Feng, M.U. Farooq, F. Raziq, Y. Xiao, Y. Li, All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization, ACS Energy Lett. 5 (2020) 290–320.

DOI: 10.1021/acsenergylett.9b02338

Google Scholar

[10] D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang, Q. Zhang, All-inorganic cesium lead halide perovskite nanocrystals: Synthesis, surface engineering and applications, J Mater Chem C Mater. 7 (2019) 757–789.

DOI: 10.1039/c8tc04381g

Google Scholar

[11] J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu, Z. Jin, CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability, J Am Chem Soc. 139 (2017) 14009–14012.

DOI: 10.1021/jacs.7b07949

Google Scholar

[12] W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham, Chemically diverse and multifunctional hybrid organic-inorganic perovskites, Nat Rev Mater. 2 (2017) 1–47.

DOI: 10.1038/natrevmats.2016.99

Google Scholar

[13] Y. Hu, M.F. Aygüler, M.L. Petrus, T. Bein, P. Docampo, Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites, ACS Energy Lett. 2 (2017) 2212–2218.

DOI: 10.1021/acsenergylett.7b00731

Google Scholar

[14] Y. Jiang, B. Li, T. Zhang, Y. Shi, Q.H. Xu, Photoluminescence Mechanisms of All-Inorganic Cesium Lead Bromide Perovskites Revealed by Single Particle Spectroscopy, ChemNanoMat. 6 (2020) 327–335.

DOI: 10.1002/cnma.201900690

Google Scholar

[15] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, All-Inorganic Perovskite Solar Cells, J Am Chem Soc. 138 (2016) 15829–15832.

DOI: 10.1021/jacs.6b10227

Google Scholar

[16] B. Alsayid, J. Jallad, Modeling and Simulation of Photovoltaic Cells/Module/Arrays, International Journal of Research and Reviews in Computer Science. 2 (2011) 1327–1331.

Google Scholar

[17] A. Kowsar, M. Billah, S. Dey, S.C. Debnath, S. Yeakin, S.F. Uddin Farhad, Comparative Study on Solar Cell Simulators, ICIET 2019 - 2nd International Conference on Innovation in Engineering and Technology. (2019).

DOI: 10.1109/iciet48527.2019.9290675

Google Scholar

[18] A. Bag, R. Radhakrishnan, R. Nekovei, R. Jeyakumar, Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation, Solar Energy. 196 (2020) 177–182.

DOI: 10.1016/j.solener.2019.12.014

Google Scholar

[19] A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency, Superlattices Microstruct. 129 (2019) 240–246.

DOI: 10.1016/j.spmi.2019.04.007

Google Scholar

[20] T. Bendib, H. Bencherif, M.A. Abdi, F. Meddour, L. Dehimi, M. Chahdi, Combined optical-electrical modeling of perovskite solar cell with an optimized design, Opt Mater (Amst). 109 (2020) 110259.

DOI: 10.1016/j.optmat.2020.110259

Google Scholar

[21] T. Minemoto, M. Murata, Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells, J Appl Phys. 116 (2014).

DOI: 10.1063/1.4891982

Google Scholar

[22] R. Jeyakumar, A. Bag, R. Nekovei, R. Radhakrishnan, Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells, J Electron Mater. 49 (2020) 3533–3539.

DOI: 10.1007/s11664-020-08041-w

Google Scholar

[23] S. Ullah, P. Liu, J. Wang, P. Yang, L. Liu, S.E. Yang, H. Guo, T. Xia, Y. Chen, Optimizing the working mechanism of the CsPbBr3-based inorganic perovskite solar cells for enhanced efficiency, Solar Energy. 209 (2020) 79–84.

DOI: 10.1016/j.solener.2020.09.003

Google Scholar

[24] A. Bag, R. Radhakrishnan, R. Nekovei, R. Jeyakumar, W. Isoe, M. Mageto, C. Maghanga, M. Mwamburi, V. Odari, C. Awino, Thickness Dependence of Window Layer on CH3NH3PbI3-XClX Perovskite Solar Cell, Solar Energy. 2020 (2020) 177–182.

DOI: 10.1155/2020/8877744

Google Scholar

[25] J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, S. (Frank) Liu, Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation, J Alloys Compd. 818 (2020) 152903.

DOI: 10.1016/j.jallcom.2019.152903

Google Scholar

[26] D. Huang, P. Xie, Z. Pan, H. Rao, X. Zhong, One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells, J Mater Chem A Mater. 7 (2019) 22420–22428.

DOI: 10.1039/c9ta08465g

Google Scholar

[27] J. Hua, X. Deng, C. Niu, F. Huang, Y. Peng, W. Li, Z. Ku, Y. bing Cheng, A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation, RSC Adv. 10 (2020) 8905–8909

DOI: 10.1039/d0ra00446d

Google Scholar

[28] Tanvi, V. Saxena, A. Singh, O. Prakash, A. Mahajan, A.K. Debnath, K.P. Muthe, S.C. Gadkari, Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO2 layer, Solar Energy Materials and Solar Cells. 170 (2017) 127–136.

DOI: 10.1016/j.solmat.2017.05.013

Google Scholar

[29] N. Mundhaas, Z.J. Yu, K.A. Bush, H.P. Wang, J. Häusele, S. Kavadiya, M.D. McGehee, Z.C. Holman, Series Resistance Measurements of Perovskite Solar Cells Using Jsc–Voc Measurements, Solar RRL. 3 (2019) 5–9.

DOI: 10.1002/solr.201800378

Google Scholar

[30] M. Wolf, H. Rauschenbach, Resistance effects on measurements, Advanced Energy Conversion. 3 (1963) 455–479.

DOI: 10.1016/0365-1789(63)90063-8

Google Scholar

[31] L. Zhang, T. Hu, J. Li, L. Zhang, H. Li, Z. Lu, G. Wang, All-Inorganic Perovskite Solar Cells with Both High Open-Circuit Voltage and Stability, Front Mater. 6 (2020) 1–8.

DOI: 10.3389/fmats.2019.00330

Google Scholar

[32] J. Ding, J. Duan, C. Guo, Q. Tang, Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering, J Mater Chem A Mater. 6 (2018) 21999–22004.

DOI: 10.1039/c8ta02522c

Google Scholar

[33] Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, Q. Tang, Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V, Solar RRL. 3 (2019) 1–7.

DOI: 10.1002/solr.201800284

Google Scholar