Same same but Different - Definition and Explicit Notation of an Orientation in MTEX vs. Quasi-Standard

Article Preview

Abstract:

Even though the descriptive definition of orientation is the same in both settings, the explicitnotation of a crystallographic orientation as (3 3) matrix in terms of Euler angles featuredby the popular MATLAB toolbox MTEX differs by an inversion from the quasi-standard notation datedback to the early days of quantitative texture analysis championed by H.-J. Bunge. The origin of thisdiscrepancy is revealed by an enlightening view provided in algebraic terms of a change of basis.Understanding the effect of inversion is instrumental to do proper computations with crystallographicorientations and rotations, e.g. when multiplying with elements of a crystallographic symmetry group,and to compare results of texture analyses accomplished in different settings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 365)

Pages:

151-156

Citation:

Online since:

November 2024

Authors:

Funder:

The publication of this article was funded by the TU Bergakademie Freiberg

Export:

Share:

Citation:

* - Corresponding Author

[1] Mtex on-line documentation: https://mtex-toolbox.github.io/Documentation (accessed Jul 28, 2024)

Google Scholar

[2] Matlab, The MathWorks, Inc. 1984-2024, https://de.mathworks.com/ accessed: Jul 28, 2024.

Google Scholar

[3] F. Bachmann, R. Hielscher and H. Schaeben: Solid State Phenomena 160 (2010), p.63

Google Scholar

[4] Information on https://mtex-toolbox.github.io/MTEXvsBungeConvention.html (accessed Jul 28, 2024)

Google Scholar

[5] Information on https://mtex-toolbox.github.io/publications (accessed Jul 28, 2024)

Google Scholar

[6] https://de.mathworks.com/help/fusion/ug/rotations-orientation-and-quaternions.html (accessed Jul 28, 2024)

Google Scholar

[7] H.-J. Bunge: Mathematische Methoden der Texturanalyse (Akademie Verlag, Berlin 1969)

Google Scholar

[8] H.-J. Bunge: Texture Analysis in Materials Science - Mathematical Methods (Butterworths, London Boston Sydney Wellington Durban Toronto 1982)[9] R. Hielscher and H. Schaeben: J. Appl. Cryst. 41 (2008), p.1024

Google Scholar

[10] R.A. Beauregard and J.B. Fraleigh: A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields (Houghton Mifflin Company, Boston, USA 1973).

Google Scholar

[11] S. Lang: Linear Algebra, 3rd edition (Springer, New York - Berlin - Heidelberg - Hong Kong London - Milan - Paris - Tokyo 1987)

Google Scholar

[12] S.L. Altmann: Rotations, Quaternions, and Double Groups (Oxford University Press, Oxford 1986)

Google Scholar

[13] Information on https://mtex-toolbox.github.io/DefinitionAsCoordinateTransform. html (accessed Jul 28, 2024)

Google Scholar

[14] A. Novelia and O.M. O'Reilly: Regul. Chaot. Dyn. 20 (2015), p.729

Google Scholar

[15] S. Helgason: The Radon Transform (Birkhäuser, Boston, MA, USA 1980)

Google Scholar

[16] J. Pospiech: Kristall und Technik 7 (1972), p.1057

Google Scholar

[17] J. Pospiech, A. Gnatek and K. Fichtner: Kristall und Technik 9 (1974), p.729

Google Scholar

[18] A. Morawiec: Orientations and Rotations - Computations in Crystallographic Textures (Springer, Berlin - Heidelberg 2004)

Google Scholar

[19] O. Engler, S. Zaefferer and V. Randle: Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, 3rd Edition (CRC Press Taylor & Francis, Boca Raton, FL, USA 2024)

DOI: 10.1201/9781003258339

Google Scholar

[20] S. Matthies, G.W. Vinel and K. Helming: Standard distributions in texture analysis: maps for the case of cubic-orthorhombic symmetry (Akademie-Verlag, Berlin 1987)

DOI: 10.1515/9783112736173

Google Scholar

[21] V. Klosek: EPJ Web of Conferences 155, 00005 (2017) https://doi.org/10.1051/epjconf/201715500005 (accessed Jul 28, 2024)

Google Scholar