Effect of Cold Isostatic Pressing on the Thermal Stability of PMMA Interlayer-Encapsulated MAPbI3 Perovskite Films

Article Preview

Abstract:

The thermal instability of the perovskite layer hinders the commercialization of perovskite solar cells (PSCs). In this work, the effect of cold isostatic pressing (CIP) on the thermal stability of poly (methyl methacrylate) (PMMA) interlayer-encapsulated methylammonium lead iodide (MAPbI3) perovskite (PMMA-MAPbI3) film was investigated. The MAPbI3 perovskite film was prepared via a vacuum-assisted solution process (VASP) on the SnO2-coated FTO glass substrate. Following this, a PMMA interlayer was spin-coated on the MAPbI3 film. The PMMA-MAPbI3 film was then vacuum-sealed in a thermoplastic bag and pressed in a CIP chamber filled with silicone oil at a pressure of 5 MPa for 10 min. The CIP-treated film was then subjected to thermal stressing at 150 °C for 1–5 h to compare its thermal stability against a pristine film untreated with CIP. The CIP treatment densified the MAPbI3 perovskite grains and enhanced the interfacial bonding between the PMMA interlayer and the perovskite film. These enhancements contributed to the superior thermal stability of the CIP-treated film, as its morphology retained most of the MAPbI3 perovskite grains with minimal conversion to PbI2 nanorods, evidenced by the minimal evolution of the PbI2 XRD peak. The photoluminescence (PL) spectra of the CIP-treated film showed higher retention of the emission peak at 770 nm after 5 h of thermal stressing, signifying less thermal degradation than the untreated pristine film. Thus, CIP is demonstrated as a simple method that can enhance the thermal stability of the PMMA-MAPbI3 film.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 369)

Pages:

39-44

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu, J. Zhang, H. Zhang, Z. Wang, et al: Nature Vol. 624 (2023), p.557–563

Google Scholar

[2] T.T. Ava, H.J. Jeong, H.M. Yu, K.-N. Lee, T.M. Abdel-Fattah, M.S. Jeong, and G. Namkoong: Appl Surf Sci Vol. 558 (2021), p.149852

DOI: 10.1016/j.apsusc.2021.149852

Google Scholar

[3] R. Yang, Y. Wang, P. Zhang, D. Liu, H. Chen, T. Zhang, F. Wang, D. Yang, J. Wu, Z.D. Chen, and S. Li: IEEE J Photovoltaics Vol. 9 (2019), p.207–213

Google Scholar

[4] J.-W. Lee, S.-G. Kim, J.-M. Yang, Y. Yang, and N.-G. Park: APL Mater Vol. 7 (2019), p.041111

Google Scholar

[5] J. Li, Q. Dong, N. Li, and L. Wang: Adv Energy Mater Vol. 7 (2017), p.1602922

Google Scholar

[6] J.S. Yun, J. Kim, T. Young, R.J. Patterson, D. Kim, J. Seidel, S. Lim, M.A. Green, S. Huang, and A. Ho‐Baillie: Adv Funct Mater Vol. 28 (2018), p.1705363

Google Scholar

[7] S. Cacovich, L. Ciná, F. Matteocci, G. Divitini, P.A. Midgley, A. Di Carlo, and C. Ducati: Nanoscale Vol. 9 (2017), p.4700–4706

DOI: 10.1039/c7nr00784a

Google Scholar

[8] G. Tumen-ulzii, C. Qin, T. Matsushima, M.R. Leyden, U. Balijipalli, D. Klotz, and C. Adachi: (2020), p.2000305

DOI: 10.1002/solr.202000305

Google Scholar

[9] T.-H. Han, J.-W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. De Marco, S.-J. Lee, S.-H. Bae, Y. Yuan, H.M. Lee, Y. Huang, and Y. Yang: Nat Commun Vol. 10 (2019), p.520

DOI: 10.1038/s41467-019-08455-z

Google Scholar

[10] A. Tong, C. Zhu, H. Yan, C. Zhang, Y. Jin, Y. Wu, F. Cao, J. Wu, and W. Sun: J Alloys Compd Vol. 942 (2023), p.169084

Google Scholar

[11] L. Kuai, Y. Wang, Z. Zhang, Y. Yang, Y. Qin, T. Wu, Y. Li, Y. Li, T. Song, X. Gao, L. Wang, and B. Sun: Sol RRL Vol. 3 (2019), p.1900053

Google Scholar

[12] F. Shao, Z. Tian, P. Qin, K. Bu, W. Zhao, L. Xu, D. Wang, and F. Huang: Sci Rep Vol. 8 (2018), p.1–8

Google Scholar

[13] L.J. Sutherland, J. Benitez-Rodriguez, D. Vak, S. Yan, N. Pai, J. Jasieniak, M. Gao, G.P. Simon, and H.C. Weerasinghe: Commun Mater Vol. 5 (2024), p.90

DOI: 10.1038/s43246-024-00530-3

Google Scholar

[14] T. Matsushima, T. Fujihara, C. Qin, S. Terakawa, Y. Esaki, S. Hwang, A.S.D. Sandanayaka, W.J. Potscavage, and C. Adachi: J Mater Chem A Vol. 3 (2015), p.17780–17787

DOI: 10.1039/c5ta03796d

Google Scholar

[15] B. McKenna, J.R. Troughton, T.M. Watson, and R.C. Evans: RSC Adv Vol. 7 (2017), p.32942–32951

DOI: 10.1039/c7ra06002e

Google Scholar

[16] Y.H. Soo, S.A. Ng, Y.H. Wong, and C.Y. Ng: J Mater Sci Mater Electron Vol. 32 (2021), p.14885–14900

DOI: 10.1007/s10854-021-06041-y

Google Scholar

[17] Y.H. Soo, C.Y. Ng, H.K. Jun, S.A. Ng, and Y.H. Wong: J Mater Sci Vol. 57 (2022), p.10242–10259

Google Scholar

[18] Y.H. Soo, C.Y. Ng, H.K. Jun, S.A. Ng, F.W. Low, C.G. Tan, and Z. Lockman: Synth Met Vol. 301 (2024), p.117527

Google Scholar

[19] D. Shan, G. Tong, Y. Cao, M. Tang, J. Xu, L. Yu, and K. Chen: Nanoscale Res Lett Vol. 14 (2019), p.208

Google Scholar

[20] Q. Meng, Y. Chen, Y.Y. Xiao, J. Sun, X. Zhang, C.B. Han, H. Gao, Y. Zhang, and H. Yan: J Mater Sci Mater Electron Vol. 32 (2021), p.12784–12792

DOI: 10.1007/s10854-020-03029-y

Google Scholar

[21] L. Chen, H. Cao, S. Wang, Y. Luo, T. Tao, J. Sun, and M. Zhang: RSC Adv Vol. 9 (2019), p.10148–10154

Google Scholar

[22] T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, S. Li, Z. Ku, Y. Peng, F. Huang, Q. Meng, Y.-B. Cheng, and J. Zhong: Adv Energy Mater Vol. 7 (2017), p.1700576

Google Scholar

[23] Y. Yang, L. Wu, X. Hao, Z. Tang, H. Lai, J. Zhang, W. Wang, and L. Feng: RSC Adv Vol. 9 (2019), p.28561–28568

DOI: 10.1039/c9ra05371a

Google Scholar

[24] N. Li, F. Xu, Z. Qiu, J. Liu, X. Wan, X. Zhu, H. Yu, C. Li, Y. Liu, and B. Cao: J Power Sources Vol. 426 (2019), p.188–196

Google Scholar