Direct Integration of Iron Oxide Nanoparticles on Bacterial Cellulose for Dye Degradation in Water

Article Preview

Abstract:

Nanocomposites derived from biomaterials are crucial in advancing sustainable and innovative functional materials for diverse applications, including environmental remediation and wastewater treatment. In this paper, we report the fabrication of a magnetic composite derived from magnetic iron oxide nanoparticles (MIONPs) and bacterial cellulose (BC) for the photocatalytic degradation of organic pollutants in water. The magnetic films were fabricated by in situ co-precipitation of MIONPs into the BC matrix. Fourier transform infrared spectroscopy revealed the presence of Fe-O vibrations in the nanocomposite. Scanning electron microscopy and energy-dispersive X-ray spectroscopy further confirmed the presence of MIONPs on the surface of the bacterial cellulose, indicating the successful integration of MIONPs into the matrix. X-ray diffraction pattern of the nanocomposite exhibited the crystalline features of the MIONPs. The photodegradation capacity of the magnetic BC films was evaluated using methylene blue (MB) as a model organic pollutant. Results revealed the photodegradation efficiencies of approximately 68% and 73% after 120 mins of irradiation under ambient and ultraviolet (UV) light, respectively. Early onset of dye degradation saturation was also observed for samples exposed to ambient light condition. No significant changes in the optical absorption of the dye when treated with BC only with and without illumination, suggesting that the photocatalytic effect is primarily due to the MIONPs. This work presents a promising strategy for utilizing biological resources such as bacterial cellulose as a hybrid material for environmental and other advanced applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 369)

Pages:

67-73

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bhat et al.: Nanotechnol. Rev. Vol. 10 (2021), p.237–253

Google Scholar

[2] M. Hajfathalian et al.: WIREs Nanomedicine Nanobiotechnology Vol. 16 (2024), p. e1959

Google Scholar

[3] Z. Sun, T. Liao, and L. Kou: Sci. China Mater. Vol. 60 (2017) p.1–24

Google Scholar

[4] P. Grzybek, G. Dudek, and B. Van Der Bruggen: Chem. Eng. J. Vol. 495 (2024), p.153500

Google Scholar

[5] S. M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, and K. Adibkia: Mater. Sci. Eng. C Vol. 44 (2014), p.278–284

DOI: 10.1016/j.msec.2014.08.031

Google Scholar

[6] X. Zha, C. Yang, X. Huang, J. Ding, and Z. Ding,: Environ. Pollut. Bioavailab. Vol. 36 (2024) p.2376827

Google Scholar

[7] P. Singh et al.: Mater. Today Chem. Vol. 14 (2019), p.100186

Google Scholar

[8] P. Dallas, A. B. Bourlinos, D. Niarchos, and D. Petridis: J. Mater. Sci. Vol. 42, (2007), pp.4996-5002

Google Scholar

[9] X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao, and W. Song: J Mater Chem A Vol. 1, (2013), pp.959-965

Google Scholar

[10] A. Naznin et al.: Pharmaceutics Vol. 15 (2023), p.732

Google Scholar

[11] O. Eskilson et al.: ACS Appl. Nano Mater. Vol. 7 (2024), p.6068–6078

Google Scholar

[12] A. M. A. Gallegos, S. Herrera Carrera, R. Parra, T. Keshavarz, and H. M. N. Iqbal: BioResources Vol. 11 (2016), p.5641–5655

DOI: 10.15376/biores.11.2.gallegos

Google Scholar

[13] T. A. Faraco et al.: Polymers Vol. 15 (2023) p.479

Google Scholar

[14] R. Patwa, O. Zandraa, Z. Capáková, N. Saha, and P. Sáha: Polymers Vol. 12 (2020) p.2690

Google Scholar

[15] C. Mira-Cuenca, T. Meslier, S. Roig-Sanchez, A. Laromaine, and A. Roig: ACS Appl. Polym. Mater. Vol. 3 (2021), p.4959–4965

DOI: 10.1021/acsapm.1c00723

Google Scholar

[16] M. Chanthiwong, W. Mongkolthanaruk, S. J. Eichhorn, and S. Pinitsoontorn: Mater. Des. Vol. 196 (2020), p.109148

Google Scholar

[17] J.P.L. Oracion et al.: Journal of Applied Science and Engineering Vol. 24 (2021), pp.351-357

Google Scholar

[18] M. L. M. Budlayan, J. N. Patricio, S. D. Arco, R. Y. Capangpangan, and A. C. Alguno: Mater. Today Proc. Vol. 46 (2021), p.1608–1612

DOI: 10.1016/j.matpr.2020.07.251

Google Scholar

[19] M. Ghereghlou, A. A. Esmaeili, and M. Darroudi: Appl. Organomet. Chem. Vol. 35 (2021), p. e6387

Google Scholar

[20] G. H. Matar and M. Andac: Environ. Sci. Pollut. Res. Vol. 31 (2024), p.24894–24912

Google Scholar

[21] Y. S. Jara, T. T. Mekiso, and A. P. Washe: Sci. Rep. Vol. 14 (2024), p.6997

Google Scholar