Electrowetting Behavior of Water Microdroplets on a Natural Superhydrophobic Leaf and its Elastomeric Replica

Article Preview

Abstract:

Investigating the electrowetting behavior of droplets on structured surfaces provides insight in developing electric-driven microfluidic substrates and membranes. Microstructures and patterns inspired by nature could result in interestingly unique wettability and electrowetting phenomenon. In this work, the electrowetting of water droplets on a superhydrophobic leaf of desmodium (Desmodium spp) and its elastomeric replica were explored. An open electrowetting system consisted of an optical camera, platinum wire, and DC power supply with water microdroplets as test liquid was used to investigate the electrowetting behavior on the leaf. Soft lithography using elastomer was used to produce replica of the leaves. Natural cell-like patterns, including central protrusions and microhairs, contribute to the leaf's superhydrophobic properties (contact angle > 150°). The negative copy of the natural patterns generated via soft lithography produced a microstructured elastomeric film, showing a static contact angle of ~128°. Optical microscope images of the elastomeric copy revealed the successful duplication of the leaf’s surface features. Subsequent electrowetting experiments demonstrated a contact angle reduction of up to 15° and 9.5° for the natural leaf and its elastomeric replica, respectively. A pronounced electrowetting-driven droplet motion was observed on the leaf while droplet pinning was noted in the elastomer. These results offer new insights into the electrowetting phenomenon of microstructured surfaces for potential self-cleaning and water-trapping applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 369)

Pages:

95-100

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Daniel, M. Vuckovac, M. Backholm et al.: Commun. Phys. Vol. 6 (2023), p.152

Google Scholar

[2] M. Li, C. Li, B. R. K. Blackman, and S. Eduardo: Int. Mater. Rev. Vol. 67 (2022), p.658–681

Google Scholar

[3] J. Lin, Y. Cai, X. Wang, B. Ding, J. Yu, and M. Wang: Nanoscale Vol. 3 (2011), p.1258

Google Scholar

[4] M. Kumar and R. Bhardwaj: Sci. Rep. Vol. 10 (2020), p.935

Google Scholar

[5] L. Yang, X. Shen, Q. Yang, J. Li et al.: Opt. Mater. Vol. 112 (2021), p.110740

Google Scholar

[6] S. Zheng, C. Li, Q. Fu. W. Hu et al.: Mater. Des. Vol. 93 (2016), p.261

Google Scholar

[7] Information on https://www.feedipedia.org/node/301

Google Scholar

[8] M. L. M. Budlayan, D.C. Palangyos, J. N. Patricio, S. D. Arco, and R. A. Guerrero: Optical Manipulation and Structured Materials Conference (2024), p.1260609

Google Scholar

[9] H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay: Microsyst. Technol. Vol. 16 (2010), p.449–460

Google Scholar

[10] M. L. Budlayan, J. N. Patricio, S. D. Arco, and R. A. Guerrero: Curr. Nanosci. Vol. 20 (204), p.248–263

Google Scholar

[11] X. Song, H. Zhang, D. Li, D. Jia, and T. Liu: Sci. Rep. Vol. 10 (2020), p.16318

Google Scholar

[12] J. Kedzierski and E. Holihan: Sci. Robot. Vol. 3 (2018), p. eaat5643

Google Scholar

[13] A. A. Papaderakis, H. A. Al Nasser, J.-Y. Chen, A. Juel, and R. A. W. Dryfe: Electrochimica Acta Vol. 452 (2023), p.142342

DOI: 10.1016/j.electacta.2023.142342

Google Scholar

[14] S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis, and J. Ralston: J. Am. Chem. Soc. Vol. 128 (2006), p.3098–3101

DOI: 10.1021/ja057606d

Google Scholar

[15] S. Armstrong, G. McHale, R. Ledesma-Aguilar, and G. G. Wells: Langmuir Vol. 36 (2020), p.11332

Google Scholar

[16] S. Latthe, C. Terashima, K. Nakata, and A. Fujishima: Molecules Vol. 19 (2014) p.4256–4283

DOI: 10.3390/molecules19044256

Google Scholar

[17] M. J. Talbot and R. G. White: Plant Methods Vol. 9 (2013), p.40

Google Scholar

[18] H. Jayakody, P. Petrie, H. J. D. Boer, and M. Whitty: Plant Methods Vol. 17 (2021) p.27

Google Scholar