Characteristics of NMC811 after Surface Modification Using Rice Husk Derived Silica Coating

Article Preview

Abstract:

High nickel content in nickel manganese cobalt (NMC811, LiNi0.8Mn0.1Co0.1O2) resulted in high capacity but low structural stability. Surface modification of NMC811 via silica (SiO2) coating is known to counter this problem, leading to better electrochemical performance. In this work, silica was synthesized from rice husk through sol-gel method with alkaline extraction followed by acidification process. The resulting silica was coated onto commercially available NMC811 to modify its surface via solid-state reaction method. The characterization results showed that the silica coated NMC811 demonstrated a higher conductivity and lithium diffusion coefficient of 2.85 x 10-5 S/cm and 2.52 x 10-14 cm2/s, respectively, compared to that of bare NMC811 (8.17 x 10-6 S/cm and 1.75 x 10-15 cm2/s, respectively). This result confirms that the silica derived from rice husk can be used as a potential low-cost material to modify the surface and thus to increase the electrochemical performance of commercial NMC811.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 369)

Pages:

101-106

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Y. Wu, Q. Bao, Y.T. Tsai, J.G. Duh: Journal of Alloys and Compounds Vol. 865 (2021) p.158806

Google Scholar

[2] A. S. Wijareni, H. Widiyandari, A. Purwanto, A. F. Arif, and M. Z. Mubarok: Energies Vol. 15 (2022), p.5794

Google Scholar

[3] M. Zhang, J. Shen, J. Li, D. Zhang, Y. Yan, Y. Huang, and Z. Li: Ceramics International Vol. 46 (2020) p.4643–4651

Google Scholar

[4] H. Gu, J. Wang, Z. Wang, J. Tong, N. Qi, G. Han, and M. Zhang: Applied Surface Science Vol. 539 (2021) p.148034

Google Scholar

[5] S. Lee, G. Park, S. Sim, B. Jin, and H. Kim: Journal of Alloys and Compounds Vol. 791 (2010) p.193–199

Google Scholar

[6] L. Liang, G. Hu, F. Jiang, and Y. Cao: Journal of Alloys and Compounds Vol. 657 (2016) p.570–581

Google Scholar

[7] W. Li, Y. Li, L. Yang, Y. Chen, J. Guo, J. Zhu, and G. L. Cao: Ionics Vol. 26 (2020) p.5393–5403

Google Scholar

[8] W. Cho, S. M. Kim, J. H. Song, T. Yim, S. G. Woo, K. W. Lee, J. S. Kim, and Y. J. Kim: Journal of Power Sources Vol. 282 (2015) p.45–50

Google Scholar

[9] P. Sharma, J. Prakash, and R. Kaushal: Environmental Research Vol. 212 (2022) p.113328

Google Scholar

[10] C. A. Morales-Paredes, I. Rodríguez-Linzán, M. D. Saquete, R. Luque, S. M. Osman, N. Boluda-Botella, and R. D. Joan Manuel: Environmental Research Vol. 231 (2023) p.116002

DOI: 10.1016/j.envres.2023.116002

Google Scholar

[11] D. Shrestha, T. Nayaju, M. R. Kandel, R. R. Pradhananga, C. H. Park, and C. S. Kim: Heliyon Vol. 9 (2023) p.1–10

Google Scholar

[12] F. Angellinnov, A. Subhan, A. J. Drew, and A. Z. Syahrial: Heliyon Vol. 10 (2024) p. e23199

Google Scholar

[13] A. Daulay, Andriayani, Marpongahtun, and S. Gea: Rasayan Journal of Chemistry Vol. 14 (2021) p.2125–2128

DOI: 10.31788/rjc.2021.1436351

Google Scholar

[14] P. Larkunthod, J. Boonlakhorn, P. Pansarakham, P. Pongdontri, P. Thongbai, and P. Theerakulpisut: Chilean Journal of Agricultural Research Vol. 82 (2022) p.412–425

DOI: 10.4067/s0718-58392022000300412

Google Scholar

[15] F. Angellinnov, Y. K. Krisnandi, D. U. C. Rahayu, and D. Dhaneswara: International Journal of Technology Vol. 13 (2022) p.880–889

Google Scholar

[16] T. Qu, X. Zhang, X. Gu, L. Han, G. Ji, X. Chen, and W. Xiao: ACS Sustainable Chemistry and Engineering Vol. 5 (2017) p.7733–7742

Google Scholar

[17] D. M. G. Mejia, D. F. Hincapie-rojas, and F. N. Jimenez-garcia: Heliyon Vol. 9 (2023) p. e13567

Google Scholar

[18] Supiyani, H. Agusnar, P. Sugita, and I. Nainggolan: South African Journal of Chemical Engineering Vol. 40 (2022) p.80–86

DOI: 10.1016/j.sajce.2022.02.001

Google Scholar

[19] O. Kamon-in, S. Srilomsak, and N. Meethong: Key Engineering Materials Vol. 766 (2018) p.51–57

Google Scholar

[20] Y. Li, S. Deng, Y. Chen, J. Gao, J. Zhu, L. Xue, T. Lei, G. Cao, J. Guo, and S. Wang: Electrochimica Acta Vol. 300 (2019) p.26–35

Google Scholar

[21] P. Zhou, Z. Zhang, H. Meng, Y. Lu, J. Cao, F. Cheng, Z. Tao, and J. Chen: Nanoscale Vol. 8 (2016) p.19263–19269

Google Scholar