Optical Characteristics of Antireflective Materials Based on Polymers with Carbon Nanomaterials

Article Preview

Abstract:

Methods of laser treatment and oxygen plasma treatment for the anti-reflective coatings on the basis of composite materials filled by epoxy polymer with multi-walled carbon nanotubes are demonstrated. The influence of structuring the surface of composite materials by different methods on the reflectivity in the UV, visible, near and middle IR wavelength ranges has been investigated. The possibility of creating composite structures with low reflectance in the range of 0.2 - 25 µm, corresponding to the requirements for anti-reflection coatings of optical and optoelectronic systems of spacecraft and ground-based systems, has been demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 369)

Pages:

87-93

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhu, X. Yang, Z. Fu, C. Wang, W. Wu, L. Zhanbg. J. Porous Mater., 23(5), 1217 (2016).

Google Scholar

[2] Y. Lin, J. He. Prog. Mater. Sci., 61, 94 (2014).

Google Scholar

[3] M. Steglich, D. Lehr, S. Ratzsch, T. Kasebier, F. Schrempel, E. Kley, A. Tunnermann. Laser Photonics Rev., 8(2), L13 (2014).

Google Scholar

[4] Y. Sun, J. Evans, F. Ding, N. Liu, Y. Zhang, S. He. Opt. Express, 23(15), 20115 (2015).

Google Scholar

[5] M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. Sprafke, J. Ziegler, M. Zik, R. Wehrspohn. Adv. Optical. Mater., 3(2), 147 (2015).

DOI: 10.1002/adom.201400395

Google Scholar

[6] F. De Nicola, P. Hines, M. Crescenzi, N. Motta. Phys. Rev. B, 96, 045409 (2017).

Google Scholar

[7] K. Amemiya, D. Fukuda, T. Numata, M. Tanabe, Y. Ichino. Appl. Opt., 51(29), 6917 (2012).

Google Scholar

[8] S. Azoubel, R. Cohen, Sh. Mugdassi. Surface and Coatings Technology, 262, 21 (2015).

Google Scholar

[9] D. Das, A. Banerjee. Appl. Surf. Sci., 345, 204 (2015).

Google Scholar

[10] C.J. Chunnilall, J.H. Lehman, E. Theocharous, A. Sanders. Carbon, 50, 5340 (2012).

Google Scholar

[11] J.Y. Liu, M. Soltani, R.K. Dey, B. Cui, R. Lee, H. Podmore. J. Vac. Sci. Technol., 36(6), 06JG01 (2018).

Google Scholar

[12] S. Chuang, H. Chen, J. Shieh, C. Lin, C. Cheng, H. Liu, C. Yu. Nanoscale, 2, 799 (2010).

Google Scholar

[13] T. Uchida, M. Moro, S. Hiwasa, J. Taniguchi, In: 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC) (Kyoto, 2015), p.422.

DOI: 10.1109/icep-iaac.2015.7111049

Google Scholar

[14] K. Amemiya, H. Koshikawa, T. Yamaki, Y. Maekawa, H. Shitomi, T. Numata, K. Kinoshita, M. Tanabe, D. Fukuda. Nucl. Instr. Meth. Phys. Res. B, 356, 154 (2015).

Google Scholar

[15] I.N. Parkhomenko, L.A. Vlasukova, I.D. Parfimovich, F.F. Komarov, L.S. Novikov, V.N. Chernik, D.V. Zhigulin. Acta Astronautica, 204, 124 (2023).

DOI: 10.1016/j.actaastro.2022.12.046

Google Scholar

[16] E.N. Voronina, L.S. Novikov, Structural and mechanical properties changes in carbon and boron nitride nanotubes under the impact of atomic oxygen, in: J. Kleiman (Ed.), Prot. Mater. Struct. From Sp. Environ. Astrophys. Sp. Sci. Proc., Springer, (2017), p.283–292.

DOI: 10.1007/978-3-319-19309-0_29

Google Scholar

[17] L.S. Novikov, E.N. Voronina, V.N. Chernik, N.G. Chechenin, A.V. Makunin, E. A. Vorobieva, Erosion of carbon nanotube-based polymer nanocomposites exposed to oxygen plasma, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 10 (2016) 617–622

DOI: 10.1134/s1027451016030307

Google Scholar

[18] Information on http://www.rusnanonet.ru/goods/20235/

Google Scholar

[19] Standard Practices for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Space Applications, 2006.

Google Scholar

[20] Standard Practices for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Space Applications, 2006.

Google Scholar

[21] R. Verker, A. Bolker, Y. Carmiel, I. Gouzman, E. Grossman, T.K. Minton, S. Remaury, Ground testing of an on-orbit atomic oxygen flux and ionizing radiation dose sensor based on material degradation by the space environment, Acta Astronaut. 173 (2020) 333–343.

DOI: 10.1016/j.actaastro.2020.04.065

Google Scholar

[22] V.I. Pavlenko, L.S. Novikov, G.G. Bondarenko, V.N. Chernik, A.I. Gaidar, N. I. Cherkashina, O.D. Edamenko, Experimental and physicomathematical simulation of the effect of an incident flow of atomic oxygen on highly filled polymer composites, Inorg. Mater. Appl. Res. 4 (2013) 169–173.

DOI: 10.1134/s2075113313020135

Google Scholar

[23] L. Jiao, Y. Gu, S. Wang, Z. Yang, H. Wang, Q. Li, M. Li, Z. Zhang, Atomic oxygen exposure behaviors of CVD-grown carbon nanotube film and its polymer composite film, Compos. Part A Appl. Sci. Manuf. 71 (2015) 116–125.

DOI: 10.1016/j.compositesa.2015.01.008

Google Scholar