[1]
J. Zhu, X. Yang, Z. Fu, C. Wang, W. Wu, L. Zhanbg. J. Porous Mater., 23(5), 1217 (2016).
Google Scholar
[2]
Y. Lin, J. He. Prog. Mater. Sci., 61, 94 (2014).
Google Scholar
[3]
M. Steglich, D. Lehr, S. Ratzsch, T. Kasebier, F. Schrempel, E. Kley, A. Tunnermann. Laser Photonics Rev., 8(2), L13 (2014).
Google Scholar
[4]
Y. Sun, J. Evans, F. Ding, N. Liu, Y. Zhang, S. He. Opt. Express, 23(15), 20115 (2015).
Google Scholar
[5]
M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. Sprafke, J. Ziegler, M. Zik, R. Wehrspohn. Adv. Optical. Mater., 3(2), 147 (2015).
DOI: 10.1002/adom.201400395
Google Scholar
[6]
F. De Nicola, P. Hines, M. Crescenzi, N. Motta. Phys. Rev. B, 96, 045409 (2017).
Google Scholar
[7]
K. Amemiya, D. Fukuda, T. Numata, M. Tanabe, Y. Ichino. Appl. Opt., 51(29), 6917 (2012).
Google Scholar
[8]
S. Azoubel, R. Cohen, Sh. Mugdassi. Surface and Coatings Technology, 262, 21 (2015).
Google Scholar
[9]
D. Das, A. Banerjee. Appl. Surf. Sci., 345, 204 (2015).
Google Scholar
[10]
C.J. Chunnilall, J.H. Lehman, E. Theocharous, A. Sanders. Carbon, 50, 5340 (2012).
Google Scholar
[11]
J.Y. Liu, M. Soltani, R.K. Dey, B. Cui, R. Lee, H. Podmore. J. Vac. Sci. Technol., 36(6), 06JG01 (2018).
Google Scholar
[12]
S. Chuang, H. Chen, J. Shieh, C. Lin, C. Cheng, H. Liu, C. Yu. Nanoscale, 2, 799 (2010).
Google Scholar
[13]
T. Uchida, M. Moro, S. Hiwasa, J. Taniguchi, In: 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC) (Kyoto, 2015), p.422.
DOI: 10.1109/icep-iaac.2015.7111049
Google Scholar
[14]
K. Amemiya, H. Koshikawa, T. Yamaki, Y. Maekawa, H. Shitomi, T. Numata, K. Kinoshita, M. Tanabe, D. Fukuda. Nucl. Instr. Meth. Phys. Res. B, 356, 154 (2015).
Google Scholar
[15]
I.N. Parkhomenko, L.A. Vlasukova, I.D. Parfimovich, F.F. Komarov, L.S. Novikov, V.N. Chernik, D.V. Zhigulin. Acta Astronautica, 204, 124 (2023).
DOI: 10.1016/j.actaastro.2022.12.046
Google Scholar
[16]
E.N. Voronina, L.S. Novikov, Structural and mechanical properties changes in carbon and boron nitride nanotubes under the impact of atomic oxygen, in: J. Kleiman (Ed.), Prot. Mater. Struct. From Sp. Environ. Astrophys. Sp. Sci. Proc., Springer, (2017), p.283–292.
DOI: 10.1007/978-3-319-19309-0_29
Google Scholar
[17]
L.S. Novikov, E.N. Voronina, V.N. Chernik, N.G. Chechenin, A.V. Makunin, E. A. Vorobieva, Erosion of carbon nanotube-based polymer nanocomposites exposed to oxygen plasma, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 10 (2016) 617–622
DOI: 10.1134/s1027451016030307
Google Scholar
[18]
Information on http://www.rusnanonet.ru/goods/20235/
Google Scholar
[19]
Standard Practices for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Space Applications, 2006.
Google Scholar
[20]
Standard Practices for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Space Applications, 2006.
Google Scholar
[21]
R. Verker, A. Bolker, Y. Carmiel, I. Gouzman, E. Grossman, T.K. Minton, S. Remaury, Ground testing of an on-orbit atomic oxygen flux and ionizing radiation dose sensor based on material degradation by the space environment, Acta Astronaut. 173 (2020) 333–343.
DOI: 10.1016/j.actaastro.2020.04.065
Google Scholar
[22]
V.I. Pavlenko, L.S. Novikov, G.G. Bondarenko, V.N. Chernik, A.I. Gaidar, N. I. Cherkashina, O.D. Edamenko, Experimental and physicomathematical simulation of the effect of an incident flow of atomic oxygen on highly filled polymer composites, Inorg. Mater. Appl. Res. 4 (2013) 169–173.
DOI: 10.1134/s2075113313020135
Google Scholar
[23]
L. Jiao, Y. Gu, S. Wang, Z. Yang, H. Wang, Q. Li, M. Li, Z. Zhang, Atomic oxygen exposure behaviors of CVD-grown carbon nanotube film and its polymer composite film, Compos. Part A Appl. Sci. Manuf. 71 (2015) 116–125.
DOI: 10.1016/j.compositesa.2015.01.008
Google Scholar